A027217 a(n) = Sum_{k=0..n-2} T(n,k)*T(n,k+2), T given by A026736.
1, 6, 32, 136, 640, 2593, 11860, 47532, 215531, 861334, 3893621, 15549166, 70199065, 280316029, 1264697307, 5050617474, 22776900816, 90972831448, 410117333080
Offset: 2
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 2..1000
Crossrefs
Cf. A026736.
Programs
-
GAP
T:= function(n, k) if k=0 or k=n then return 1; elif k=n-1 then return n; elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k); else return T(n-1, k-1) + T(n-1, k); fi; end; List([2..20], n-> Sum([0..n-2], k-> T(n, k)*T(n,k+2) )); # G. C. Greubel, Jul 19 2019
-
Mathematica
T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1,k-1] + T[n-2,k-1] + T[n-1,k], T[n-1,k-1] + T[n-1,k]]]; Table[Sum[T[n,k]*T[n,k+2], {k, 0, n-2}], {n, 2, 30}] (* G. C. Greubel, Jul 19 2019 *)
-
PARI
T(n, k) = if(k==n || k==0, 1, k==n-1, n, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) )); vector(20, n, n++; sum(k=0, n-2, T(n, k)*T(n,k+2)) ) \\ G. C. Greubel, Jul 19 2019
-
Sage
@CachedFunction def T(n, k): if (k==0 or k==n): return 1 elif (mod(n, 2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k) else: return T(n-1, k-1) + T(n-1, k) [sum(T(n,k)*T(n,k+2) for k in (0..n-2)) for n in (2..30)] # G. C. Greubel, Jul 19 2019