cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027218 a(n) = Sum_{k=0..n-3} T(n,k)*T(n,k+3), T given by A026736.

Original entry on oeis.org

1, 9, 51, 279, 1277, 6235, 26789, 125370, 525082, 2409886, 9969722, 45289767, 186105280, 840402559, 3439358196, 15472942142, 63155131233, 283400162019
Offset: 3

Views

Author

Keywords

Crossrefs

Cf. A026736.

Programs

  • GAP
    T:= function(n, k)
        if k=0 or k=n then return 1;
        elif k=n-1 then return n;
        elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    List([3..20], n-> Sum([0..n-3], k-> T(n, k)*T(n,k+3) )); # G. C. Greubel, Jul 19 2019
  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1,k-1] + T[n-2,k-1] + T[n-1,k], T[n-1,k-1] + T[n-1,k]]]; Table[Sum[T[n,k]*T[n,k+3], {k, 0, n-3}], {n, 3, 30}] (* G. C. Greubel, Jul 19 2019 *)
  • PARI
    T(n, k) = if(k==n || k==0, 1, k==n-1, n, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
    for(n=3,20, print1(sum(k=0, n-3, T(n, k)*T(n,k+3)), ", ")) \\ G. C. Greubel, Jul 19 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n, 2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum(T(n,k)*T(n,k+3) for k in (0..n-3)) for n in (3..30)] # G. C. Greubel, Jul 19 2019