A027265 a(n) = Sum_{k=0..2n-3} T(n,k) * T(n,k+3), with T given by A026519.
24, 104, 954, 3786, 33648, 131264, 1159844, 4508580, 39809076, 154773696, 1367463642, 5323519838, 47082494816, 183586707648, 1625447736120, 6348284151024, 56265306436584, 220081449149440, 1952476424575980, 7647723960962932, 67907006619888744, 266322435212031984
Offset: 3
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 3..1000
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *) a[n_] := a[n] = Block[{$RecursionLimit = Infinity}, Sum[T[n, k]*T[n, k+3], {k, 0, 2*n-3}] ]; Table[a[n], {n, 3, 40}] (* G. C. Greubel, Dec 21 2021 *)
-
Sage
@CachedFunction def T(n,k): # T = A026519 if (k<0 or k>2*n): return 0 elif (k==0 or k==2*n): return 1 elif (k==1 or k==2*n-1): return (n+1)//2 elif (n%2==0): return T(n-1, k) + T(n-1, k-2) else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) @CachedFunction def a(n): return sum( T(n,k)*T(n,k+3) for k in (0..2*n-3) ) [a(n) for n in (3..40)] # G. C. Greubel, Dec 21 2021
Extensions
More terms from Sean A. Irvine, Oct 26 2019