cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027266 a(n) = Sum_{k=0..2n} (k+1) * A026519(n, k).

Original entry on oeis.org

1, 6, 18, 72, 180, 648, 1512, 5184, 11664, 38880, 85536, 279936, 606528, 1959552, 4199040, 13436928, 28553472, 90699264, 191476224, 604661760, 1269789696, 3990767616, 8344332288, 26121388032, 54419558400, 169789022208
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,6,18,72]; [n le 4 select I[n] else 12*(Self(n-2) - 3*Self(n-4)): n in [1..41]]; // G. C. Greubel, Dec 21 2021
    
  • Mathematica
    CoefficientList[Series[(1+6x+6x^2)/(1-6x^2)^2,{x,0,30}],x] (* or *) LinearRecurrence[{0,12,0,-36},{1,6,18,72},30] (* Harvey P. Dale, Jun 19 2015 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -36,0,12,0]^n*[1;6;18;72])[1,1] \\ Charles R Greathouse IV, Oct 18 2022
  • Sage
    [((n+1)/2)*6^((n-1)/2)*( 3*(1-(-1)^n) + sqrt(6)*(1+(-1)^n) ) for n in (0..40)] # G. C. Greubel, Dec 21 2021
    

Formula

a(n) = Sum_{k=0..2n} (k+1) * A026519(n, k).
G.f.: (1+6*x+6*x^2)/(1-6*x^2)^2.
a(n) = 12*a(n-2) - 36*a(n-4), with a(0)=1, a(1)=6, a(2)=18, a(3)=72. - Harvey P. Dale, Jun 19 2015
a(n) = ((n+1)/2)*6^((n-1)/2)*( 3*(1-(-1)^n) + sqrt(6)*(1+(-1)^n) ). - G. C. Greubel, Dec 21 2021