cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027269 a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A026536.

Original entry on oeis.org

1, 5, 19, 150, 561, 4797, 18089, 156900, 596674, 5205950, 19932353, 174609162, 672106267, 5906040623, 22829936683, 201114700568, 780077588440, 6885880226784, 26784015828458, 236826459554380, 923352937530146, 8175978023317170, 31940549289135429, 283166067626865540
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
    Table[Sum[T[n,k]*T[n,k+2], {k,0,2*n-2}], {n,40}] (* G. C. Greubel, Apr 12 2022 *)
  • SageMath
    @CachedFunction
    def T(n, k): # A026536
        if k < 0 or n < 0: return 0
        elif k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    def A027269(n): return sum(T(n,k)*T(n,k+2) for k in (0..2*n-2))
    [A027269(n) for n in (1..40)] # G. C. Greubel, Apr 12 2022

Formula

a(n) = Sum_{k=0..2n-2} A026536(n,k) * A026536(n,k+2).

Extensions

More terms from Sean A. Irvine, Oct 26 2019
a(1) = 1 prepended by G. C. Greubel, Apr 12 2022