cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027271 a(n) = Sum_{k=0..2n} (k+1)*T(n,k), where T is given by A026536.

Original entry on oeis.org

1, 4, 18, 48, 180, 432, 1512, 3456, 11664, 25920, 85536, 186624, 606528, 1306368, 4199040, 8957952, 28553472, 60466176, 191476224, 403107840, 1269789696, 2660511744, 8344332288, 17414258688, 54419558400, 113192681472, 352638738432, 731398864896, 2272560758784
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026536, A053469, A199299 (bisection).

Programs

  • Magma
    [Round(6^(n/2)*( 3*((n+1) mod 2) + Sqrt(6)*(n mod 2) )*(n+1)/3): n in [0..40]]; // G. C. Greubel, Apr 12 2022
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
    A027271[n_]:= A027271[n]= Sum[(k+1)*T[n,k], {k,0,2*n}];
    Table[A027271[n], {n,0,40}] (* G. C. Greubel, Apr 12 2022 *)
  • PARI
    A027271(n)=my(b(n)=if(!bittest(n,0),n\2*6^(n\2-1)));4*b(n+1)+b(n+2)+6*b(n) \\ could be made more efficient and explicit by simplifying the formula for n even and for n odd separately. - M. F. Hasler, Sep 29 2012
    
  • SageMath
    [6^(n/2)*( 3*((n+1)%2) + sqrt(6)*(n%2) )*(n+1)/3 for n in (0..40)] # G. C. Greubel, Apr 12 2022

Formula

From Paul Barry, Mar 03 2004: (Start)
G.f.: (1+4*x+6*x^2)/(1-6*x^2)^2 = (d/dx)((1+3*x)/(1-6*x^2)).
a(n) = 6^(n/2)*((3-sqrt(6))*(-1)^n + (3+sqrt(6)))*(n+1)/6. (End)
a(n) = 4*b(n) + b(n+1) + 6*b(n-1) with b(n)= 0, 1, 0, 12, 0, 108, 0, 864, ... (aerated A053469). - R. J. Mathar, Sep 29 2012
E.g.f.: (1 + 2*x)*cosh(sqrt(6)*x) + sqrt(2/3)*(1 + 3*x)*sinh(sqrt(6)*x). - Stefano Spezia, May 07 2023