cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027272 Self-convolution of row n of array T given by A026552.

Original entry on oeis.org

1, 3, 19, 58, 462, 1608, 13446, 48924, 417440, 1553940, 13409576, 50618184, 440013462, 1676640462, 14649846820, 56201554888, 492944907180, 1900789437276, 16721000706580, 64734185205960, 570792185166764, 2216888144737508, 19584623363041704, 76265067399850848
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *)
    a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[n, k]*T[n, 2*n-k], {k, 0, 2*n}]];
    Table[a[n], {n,0,40}] (* G. C. Greubel, Dec 18 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026552
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+2)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-2)
    @CachedFunction
    def a(n): return sum( T(n,k)*T(n,2*n-k) for k in (0..2*n) )
    [a(n) for n in (0..40)] # G. C. Greubel, Dec 18 2021

Formula

a(n) = Sum_{k=0..2*n} A026552(n, k)*A026552(n, 2*n-k).

Extensions

More terms from Sean A. Irvine, Oct 26 2019