A027273 a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A026552.
2, 16, 52, 428, 1516, 12792, 46936, 402164, 1504432, 13015480, 49288856, 429204354, 1639174304, 14340670000, 55108565584, 483825847108, 1868067054968, 16445659005424, 63734526307552, 562323306397388, 2185849699156352, 19320211642880176, 75288454939134992
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *) a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[n, k]*T[n, k+1], {k, 0, 2*n-1}]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Dec 18 2021 *)
-
Sage
@CachedFunction def T(n,k): # T = A026552 if (k==0 or k==2*n): return 1 elif (k==1 or k==2*n-1): return (n+2)//2 elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) else: return T(n-1, k) + T(n-1, k-2) @CachedFunction def a(n): return sum( T(n,k)*T(n,k+1) for k in (0..2*n-1) ) [a(n) for n in (1..40)] # G. C. Greubel, Dec 18 2021
Extensions
More terms from Sean A. Irvine, Oct 26 2019