A027276 a(n) = Sum_{k=0..2n} (k+1) * A026552(n, k).
1, 6, 27, 72, 270, 648, 2268, 5184, 17496, 38880, 128304, 279936, 909792, 1959552, 6298560, 13436928, 42830208, 90699264, 287214336, 604661760, 1904684544, 3990767616, 12516498432, 26121388032, 81629337600, 169789022208
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,12,0,-36).
Crossrefs
Programs
-
Magma
I:= [6,27,72,270]; [1] cat [n le 4 select I[n] else 12*(Self(n-2) - 3*Self(n-4)): n in [1..41]]; // G. C. Greubel, Dec 18 2021
-
Mathematica
Table[-(1/2)*Boole[n==0] + (1/4)*6^(n/2)*(n+1)*(3*(1+(-1)^n) + Sqrt[6]*(1-(-1)^n)), {n, 0, 40}] (* G. C. Greubel, Dec 18 2021 *)
-
PARI
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -36,0,12,0]^n*[1;6;27;72])[1,1] \\ Charles R Greathouse IV, Oct 21 2022
-
Sage
@CachedFunction def T(n,k): # T = A026552 if (k==0 or k==2*n): return 1 elif (k==1 or k==2*n-1): return (n+2)//2 elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) else: return T(n-1, k) + T(n-1, k-2) @CachedFunction def a(n): return sum( (k+1)*T(n,k) for k in (0..2*n) ) [a(n) for n in (0..40)] # G. C. Greubel, Dec 18 2021
Formula
a(n) = Sum_{k=0..2n} (k+1) * A026552(n, k).
G.f.: (1 +6*x +15*x^2 -18*x^3)/(1-6*x^2)^2.
a(n) = -(1/2)*[n=0] + (1/4)*6^(n/2)*(n + 1)*(3*(1 + (-1)^n) + sqrt(6)*(1 - (-1)^n)). - G. C. Greubel, Dec 18 2021