cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027283 a(n) = Sum_{k=0..2*n-1} T(n,k) * T(n,k+1), with T given by A026584.

Original entry on oeis.org

0, 6, 26, 206, 1100, 7314, 42920, 274010, 1677332, 10616070, 66290046, 419754586, 2648500908, 16818685050, 106781976774, 680250643910, 4337083126232, 27709045093274, 177213890858938, 1135003956744310, 7276652578220372, 46702733068082702, 300013046145979184
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
    a[n_]:= a[n]= Sum[T[n, k]*T[n, k+1], {k, 0, 2*n-1}];
    Table[a[n], {n, 1, 40}] (* G. C. Greubel, Dec 15 2021 *)
  • Sage
    @CachedFunction
    def T(n, k):  # T = A026584
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n//2)
        else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    @CachedFunction
    def A027283(n): return sum(T(n,j)*T(n, j+1) for j in (0..2*n-1))
    [A027283(n) for n in (1..40)] # G. C. Greubel, Dec 15 2021

Formula

a(n) = Sum_{k=0..2*n-1} A026584(n,k) * A026584(n,k+1).

Extensions

More terms from Sean A. Irvine, Oct 26 2019