cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027337 Number of partitions of n that do not contain 3 as a part.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 8, 10, 15, 19, 27, 34, 47, 59, 79, 99, 130, 162, 209, 259, 330, 407, 512, 628, 783, 956, 1181, 1435, 1760, 2129, 2594, 3124, 3784, 4539, 5468, 6534, 7834, 9327, 11132, 13208, 15701, 18568, 21989, 25923, 30592, 35960, 42297, 49579, 58139, 67967
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of partitions of n with less than three 1's. - Geoffrey Critzer, Jun 20 2014

Crossrefs

Column k=0 of A263232.
Column 3 of A175788.

Programs

  • Mathematica
    nn=49;CoefficientList[Series[(1-x^3)Product[1/(1-x^i),{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Jun 20 2014 *)
  • PARI
    a(n)=if(n<0,0,polcoeff((1-x^3)/eta(x+x*O(x^n)),n))

Formula

G.f.: (1-x^3) Product_{m>0} 1/(1-x^m).
a(n) = A000041(n) - A000041(n-3).
a(n) ~ Pi * exp(sqrt(2*n/3)*Pi) / (4*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + Pi/(24*sqrt(6)) + 3*Pi/(2*sqrt(6)))/sqrt(n) + (37/8 + 9/(2*Pi^2) + 1801*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 04 2016