cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A027336 Number of partitions of n that do not contain 2 as a part.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 11, 15, 20, 26, 35, 45, 58, 75, 96, 121, 154, 193, 242, 302, 375, 463, 573, 703, 861, 1052, 1282, 1555, 1886, 2277, 2745, 3301, 3961, 4740, 5667, 6754, 8038, 9548, 11323, 13398, 15836, 18678, 22001, 25873, 30383, 35620, 41715, 48771
Offset: 0

Views

Author

Keywords

Comments

Pairwise sums of sequence A002865 (partitions in which the least part is at least 2).
Also number of partitions of n into parts with at most one 1. - Reinhard Zumkeller, Oct 25 2004
Also number of partitions of n into parts with at least half of the parts having size 1; equivalently (by duality) number of partitions of n where the large part is at least twice as big as the second largest part. - Franklin T. Adams-Watters, Jun 08 2005
Also number of 2-regular not necessarily connected graphs with loops allowed but no multiple edges. - Jason Kimberley, Jan 05 2011

Crossrefs

2-regular not necessarily connected graphs: A008483 (simple graphs), A000041 (multigraphs with loops allowed), A002865 (multigraphs with loops forbidden), A027336 (graphs with loops allowed but no multiple edges). - Jason Kimberley, Jan 05 2011
Column k=1 of A292622.

Programs

  • Magma
    A41 := func;
    [A41(n)-A41(n-2):n in [0..49]]; // Jason Kimberley, Jan 05 2011
  • Maple
    with(combinat): a:=proc(n) if n=0 then 1 elif n=1 then 1 else numbpart(n)-numbpart(n-2) fi end: seq(a(n),n=0..49); # Emeric Deutsch, Feb 18 2006
  • Mathematica
    a[n_] = PartitionsP[n] - PartitionsP[n-2]; a /@ Range[0, 49] (* Jean-François Alcover, Jul 13 2011, after Emeric Deutsch *)
  • PARI
    a(n)=if(n<0,0,polcoeff((1-x^2)/eta(x+x*O(x^n)),n))
    

Formula

G.f.: (1 - x^2)*Product_{m>=1} 1/(1 - x^m).
a(n) = A000041(n) - A000041(n-2).
a(n) = p(n) - p(n-2) for n >= 2, where p(n) are the partition numbers (A000041); follows at once from the g.f. - Emeric Deutsch, Feb 18 2006
a(n) ~ exp(sqrt(2*n/3)*Pi)*Pi / (6*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + 25*Pi/(24*sqrt(6)))/sqrt(n) + (25/8 + 9/(2*Pi^2) + 817*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 04 2016

Extensions

More terms from Benoit Cloitre, Dec 10 2002

A175788 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of n that do not contain k as a part.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 1, 1, 3, 1, 1, 1, 1, 5, 1, 1, 2, 2, 2, 7, 1, 1, 2, 2, 3, 2, 11, 1, 1, 2, 3, 4, 4, 4, 15, 1, 1, 2, 3, 4, 5, 6, 4, 22, 1, 1, 2, 3, 5, 6, 8, 8, 7, 30, 1, 1, 2, 3, 5, 6, 9, 10, 11, 8, 42, 1, 1, 2, 3, 5, 7, 10, 12, 15, 15, 12, 56
Offset: 0

Views

Author

Alois P. Heinz, Dec 04 2010

Keywords

Examples

			Square array A(n,k) begins:
  1, 1, 1, 1, 1, 1, ...
  1, 0, 1, 1, 1, 1, ...
  2, 1, 1, 2, 2, 2, ...
  3, 1, 2, 2, 3, 3, ...
  5, 2, 3, 4, 4, 5, ...
  7, 2, 4, 5, 6, 6, ...
		

Crossrefs

Rows n=0-1 give: A000012, A060576.
Main diagonal gives A000065 (for n>0).

Programs

  • Maple
    A41:= n-> `if`(n<0, 0, combinat[numbpart](n)):
    A:= (n,k)-> A41(n) -`if`(k>0, A41(n-k), 0):
    seq(seq(A(n,d-n), n=0..d), d=0..11);
  • Mathematica
    A41[n_] := If[n<0, 0, PartitionsP[n]]; A[n_, k_] := A41[n]-If[k>0, A41[n-k], 0]; Table[A[n, d-n], {d, 0, 11}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 18 2017, translated from Maple *)

Formula

G.f. of column 0: Product_{m>0} 1/(1-x^m).
G.f. of column k>0: (1-x^k) * Product_{m>0} 1/(1-x^m).
A(n,0) = A000041(n); A(n,k) = A000041(n) - A000041(n-k) for k>0.
For fixed k>0, A(n,k) ~ k*Pi * exp(sqrt(2*n/3)*Pi) / (12*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + Pi/(24*sqrt(6)) + k*Pi/(2*sqrt(6)))/sqrt(n) + (1/8 + 3*k/2 + 9/(2*Pi^2) + Pi^2/6912 + k*Pi^2/288 + k^2*Pi^2/36)/n). - Vaclav Kotesovec, Nov 04 2016

A027343 Number of partitions of n that do not contain 9 as a part.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 41, 54, 74, 96, 128, 165, 216, 275, 355, 448, 571, 715, 901, 1120, 1399, 1727, 2139, 2625, 3228, 3938, 4812, 5840, 7094, 8568, 10352, 12447, 14967, 17919, 21450, 25581, 30496, 36234, 43031, 50951, 60292
Offset: 0

Views

Author

Keywords

Crossrefs

9th column of A175788. Cf. A000041, A027336, A027337-A027344.

Programs

Formula

G.f.: (1-x^9) Product_{m>0} 1/(1-x^m).
a(n) = A000041(n)-A000041(n-9).
a(n) ~ 3*Pi * exp(sqrt(2*n/3)*Pi) / (4*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + Pi/(24*sqrt(6)) + 9*Pi/(2*sqrt(6)))/sqrt(n) + (109/8 + 9/(2*Pi^2) + 15769*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 04 2016

Extensions

Edited by Alois P. Heinz, Dec 04 2010

A027344 Number of partitions of n that do not contain 10 as a part.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 55, 75, 98, 130, 169, 220, 282, 363, 460, 585, 736, 925, 1154, 1440, 1782, 2205, 2713, 3333, 4075, 4977, 6050, 7347, 8888, 10735, 12925, 15541, 18627, 22297, 26620, 31734, 37741, 44825, 53118, 62865
Offset: 0

Views

Author

Keywords

Crossrefs

10th column of A175788. Cf. A000041, A027336, A027337-A027343.

Programs

  • Maple
    A41:= n-> `if`(n<0, 0, combinat[numbpart](n)):
    a:= n-> A41(n) -A41(n-10):
    seq(a(n), n=0..50);

Formula

G.f.: (1-x^10) Product_{m>0} 1/(1-x^m).
a(n) = A000041(n)-A000041(n-10).
a(n) ~ 5*Pi * exp(sqrt(2*n/3)*Pi) / (6*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + Pi/(24*sqrt(6)) + 10*Pi/(2*sqrt(6)))/sqrt(n) + (121/8 + 9/(2*Pi^2) + 19441*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 04 2016

Extensions

More terms from Benoit Cloitre, Dec 10 2002
Edited by Alois P. Heinz, Dec 04 2010

A263232 Triangle read by rows: T(n,k) is the number of partitions of n having exactly k parts equal to 3 (n >= 0, 0 <= k <= floor(n/3)).

Original entry on oeis.org

1, 1, 2, 2, 1, 4, 1, 5, 2, 8, 2, 1, 10, 4, 1, 15, 5, 2, 19, 8, 2, 1, 27, 10, 4, 1, 34, 15, 5, 2, 47, 19, 8, 2, 1, 59, 27, 10, 4, 1, 79, 34, 15, 5, 2, 99, 47, 19, 8, 2, 1, 130, 59, 27, 10, 4, 1, 162, 79, 34, 15, 5, 2, 209, 99, 47, 19, 8, 2, 1, 259, 130, 59, 27, 10, 4, 1
Offset: 0

Views

Author

Emeric Deutsch, Nov 01 2015

Keywords

Comments

Row n has 1+floor(n/3) terms. Row sums are the partition numbers (A000041). T(n,0) = A027337(n). Sum_{k=0..floor(n/3)} k*T(n,k) = A024787(n).

Examples

			T(7,1) = 4 because we have [4,3], [3,2,2], [3,2,1,1], and [3,1,1,1,1].
T(9,2) = 2 because we have [3,3,2,1] and [3,3,1,1,1].
Triangle starts:
  1;
  1;
  2;
  2, 1;
  4, 1;
  5, 2;
  8, 2, 1.
		

Crossrefs

Programs

  • Maple
    g := 1/((1-x)*(1-x^2)*(1-t*x^3)*(product(1-x^j, j = 4 .. 80))): gser := simplify(series(g, x = 0, 30)): for n from 0 to 25 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 25 do seq(coeff(P[n], t, j), j = 0 .. floor((1/3)*n)) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember; expand(
          `if`(n=0, 1, `if`(i<1, 0, `if`(i=3, x, 1)*
          `if`(i>n, 0, b(n-i, i)) +b(n, i-1))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..25);  # Alois P. Heinz, Nov 01 2015
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, If[i == 3, x, 1]* If[i > n, 0, b[n - i, i]] + b[n, i - 1]]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 25}] // Flatten (* Jean-François Alcover, Jan 21 2016, after Alois P. Heinz *)

Formula

G.f.: (1-x)*(1-x^2)*(1-tx^3)*Product_{j>=4} (1-x^j).
Showing 1-5 of 5 results.