cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027338 Number of partitions of n that do not contain 4 as a part.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 17, 23, 31, 41, 55, 71, 93, 120, 154, 196, 250, 314, 396, 495, 617, 765, 948, 1166, 1434, 1755, 2143, 2607, 3168, 3832, 4631, 5578, 6706, 8041, 9628, 11494, 13705, 16302, 19361, 22946, 27159, 32076, 37837, 44551, 52384, 61493
Offset: 0

Views

Author

Keywords

Crossrefs

Column 4 of A175788.

Programs

  • PARI
    a(n)=if(n<0,0,polcoeff((1-x^4)/eta(x+x*O(x^n)),n))

Formula

G.f.: (1-x^4) Product_{m>0} 1/(1-x^m).
a(n) = A000041(n)-A000041(n-4).
a(n) ~ Pi * exp(sqrt(2*n/3)*Pi) / (3*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + Pi/(24*sqrt(6)) + 4*Pi/(2*sqrt(6)))/sqrt(n) + (49/8 + 9/(2*Pi^2) + 3169*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 04 2016

Extensions

More terms from Benoit Cloitre, Dec 10 2002