cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027348 Number of partitions of n into distinct odd parts, the least being congruent to 3 mod 4.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 2, 3, 2, 2, 2, 4, 4, 3, 4, 6, 5, 5, 6, 8, 8, 7, 9, 11, 11, 10, 12, 15, 16, 15, 18, 21, 21, 21, 24, 28, 30, 29, 33, 38, 39, 40, 44, 51, 53, 54, 60, 67, 70, 72, 79, 89, 93, 96, 105, 116, 121, 126, 136, 150
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x^3 + x^7 + x^8 + x^10 + x^11 + x^12 + x^14 + 2*x^15 + 2*x^16 + x^17 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 41
  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001) See p. 235, Entry 9.4.8.

Crossrefs

Cf. A143063.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QHypergeometricPFQ[ {-1}, {-x^2}, x^2, -x^3] - 1) / 2, {x, 0, n}]; (* Michael Somos, Jun 25 2015 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum(k=1, sqrtint(n+1) - 1, x^(k^2 + 2*k) / (1 - x^(4*k)) / prod(j=1, k-1, 1 - x^(2*j), 1 + O(x^(n + 1 - k^2 - 2*k)))), n))}; /* Michael Somos, Jul 21 2008 */
    
  • PARI
    {a(n) = my(A, B); if( n<1, 0, A = partitions(n); sum(k=1, length(A), if( ((B = A[k])[1])%4 == 3, prod(j=2, length(B), (B[j] > B[j-1]) && ((B[j] - B[j-1])%2 == 0)))))}; /* Michael Somos, Jul 21 2008 */

Formula

G.f.: x^3 / (1 - x^4) + x^8 / ((1 - x^2) * (1 - x^8)) + x^15 / ((1 - x^2) * (1 - x^4) * (1 - x^12)) + x^24 / ((1 - x^2) * (1 - x^4) * (1 - x^6) * (1 - x^16)) + ... [Ramanujan]. - Michael Somos, Jul 21 2008
2 * a(n) = A143063(n) unless n=0. - Michael Somos, Jul 09 2015