A027362 Number of Hamiltonian cycles in the directed graph with 2n nodes {0..2n-1} and edges from each i to 2i (mod 2n) and to 2i+1 (mod 2n).
1, 1, 1, 2, 3, 4, 7, 16, 21, 48, 93, 128, 315, 448, 675, 2048, 3825, 5376, 13797, 24576, 27783, 95232, 182183, 262144, 629145, 1290240, 1835001, 3670016, 9256395, 11059200, 28629151, 67108864, 97327197, 250675200, 352149525, 704643072, 1857283155, 3616800768
Offset: 1
Keywords
Examples
The solutions for n=1, 2 and 3 are 0 1; 0 1 3 2; 0 1 2 5 4 3. The 4 solutions for n=6 are 0 1 2 4 8 5 11 10 9 7 3 6; 0 1 2 5 11 10 8 4 9 7 3 6; 0 1 3 7 2 4 8 5 11 10 9 6; 0 1 3 7 2 5 11 10 8 4 9 6.
References
- Joe McCauley, Posting to sci.math (by jmccaul(AT)iatcmail.ed.ray.com). [Date?]
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 130 terms from Joerg Arndt)
- Joerg Arndt, Matters Computational (The Fxtbook), p.904.
- Swee Hong Chan, Henk D. L. Hollmann and Dmitrii V. Pasechnik, Critical groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields, arXiv: 1312.2114 [math.CO], 2013.
- Swee Hong Chan, Henk D. L. Hollmann, Dmitrii V. Pasechnik, Sandpile groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields, arXiv:1405.0113 [math.CO], (1-May-2014).
- Swee Hong Chan, Henk D. L. Hollmann, Dmitrii V. Pasechnik, Sandpile groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields, Journal of Algebra (2015), pp. 268-295. [_Dmitrii Pasechnik_, Dec 05 2014]
- S. V. Duzhin, D. V. Pasechnik, Groups acting on necklaces and sandpile groups, 2014. See Section 3, History. - _N. J. A. Sloane_, Jun 30 2014
- Gabriele Fici and Estéban Gabory, Generalized De Bruijn Words, Invertible Necklaces, and the Burrows-Wheeler Transform, arXiv:2502.12844 [math.CO], 2025. See Table 1. p. 7.
- Lionel Levine, Sandpile groups and spanning trees of directed line graphs, arXiv:0906.2809 [math.CO], 2009-2010.
- Lionel Levine, Sandpile groups and spanning trees of directed line graphs, J. Combin. Th. (A) 118(2011), 350-364.
- Wikipedia, BEST Theorem.
Crossrefs
Cf. A003473.
Programs
-
Mathematica
p = 2; numNormalp[n_] := Module[{r, i, pp}, pp = 1; Do[r = MultiplicativeOrder[p, d]; i = EulerPhi[d]/r; pp *= (1 - 1/p^r)^i, {d, Divisors[n]}]; Return[pp]]; a[n_] := Module[{t, q, pp}, t = 1; q = n; While[0 == Mod[q, p], q /= p; t += 1]; pp = numNormalp[q]; pp *= p^n/n; Return[pp]]; Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Joerg Arndt *)
-
PARI
/* from p.907 of the Fxtbook */ p=2; /* global */ num_normal_p(n)= { local( r, i, pp ); pp = 1; fordiv (n, d, r = znorder(Mod(p,d)); i = eulerphi(d)/r; pp *= (1 - 1/p^r)^i; ); return( pp ); } num_normal(n)= { local( t, q, pp ); t = 1; q = n; while ( 0==(q%p), q/=p; t+=1; ); /* here: n==q*p^t */ pp = num_normal_p(q); pp *= p^n/n; return( pp ); } a(n) = num_normal(n); vector(66,n,a(n)) /* Joerg Arndt, Jul 03 2011 */
-
Sage
# version 4.7 def dg(n): # this gives the graph in the 3rd description g = DiGraph(loops=True) for i in range(n): g.add_vertex(); for i in range(n): g.add_edge(i, mod(2*i, n)); g.add_edge(i, mod(1+2*i, n)); return g; def A027362(n): # this gives the number of spanning trees return dg(n).laplacian_matrix().submatrix(1, 1).det(); # Dmitrii Pasechnik, Aug 14 2011
Formula
a(n) = A003473(n)/n. - Vladeta Jovovic, Sep 09 2003
a(2^k) = 2^(2^k-k-1) from L. Levine 2011, Theorem 1.3.
Comments