A027376 Number of ternary irreducible monic polynomials of degree n; dimensions of free Lie algebras.
1, 3, 3, 8, 18, 48, 116, 312, 810, 2184, 5880, 16104, 44220, 122640, 341484, 956576, 2690010, 7596480, 21522228, 61171656, 174336264, 498111952, 1426403748, 4093181688, 11767874940, 33891544368, 97764009000, 282429535752, 817028131140, 2366564736720, 6863037256208, 19924948267224, 57906879556410
Offset: 0
Examples
For n = 2 the a(2)=3 polynomials are x^2+1, x^2+x+2, x^2+2*x+2. - _Robert Israel_, Dec 16 2015
References
- E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
- M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..2102 (terms 0..200 from T. D. Noe)
- Kam Cheong Au, Evaluation of one-dimensional polylogarithmic integral, with applications to infinite series, arXiv:2007.03957 [math.NT], 2020. See 4th line of Table 1 (p. 6).
- Joscha Diehl, Rosa Preiß, and Jeremy Reizenstein, Conjugation, loop and closure invariants of the iterated-integrals signature, arXiv:2412.19670 [math.RA], 2024. See p. 6.
- Sayan Dutta, Lorenz Halbeisen, and Norbert Hungerbühler, Properties of Hesse derivatives of cubic curves, arXiv:2309.05048 [math.AG], 2023.
- T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms. Comput. Phys. Comm. 141 (2001), no. 2, 296-312.
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016. See Table A.2.
- Jake Kettinger, The dynamics of the Hesse derivative on the j-invariant, arXiv:2408.04117 [math.AG], 2024.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- D. Maître, HPL, a Mathematica implementation of the harmonic polylogarithms, Computer Physics Communications, Volume 174, Issue 3, 1 February 2006, Pages 222-240.
- G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]
- G. Viennot, Algèbres de Lie Libres et Monoïdes Libres, Lecture Notes in Mathematics 691, Springer Verlag, 1978.
- Index entries for sequences related to Lyndon words
Crossrefs
Programs
-
Maple
with(numtheory): A027376 := n -> `if`(n = 0, 1, add(mobius(d)*3^(n/d), d = divisors(n))/n): seq(A027376(n), n = 0..32);
-
Mathematica
a[0]=1; a[n_] := Module[{ds=Divisors[n], i}, Sum[MoebiusMu[ds[[i]]]3^(n/ds[[i]]), {i, 1, Length[ds]}]/n] a[0]=1; a[n_] := DivisorSum[n, MoebiusMu[n/#]*3^#&]/n; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Dec 01 2015 *) mx=40;f[x_,k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i,{i,1,mx}];CoefficientList[Series[f[x,3],{x,0,mx}],x] (* Herbert Kociemba, Nov 25 2016 *)
-
PARI
a(n)=if(n<1,n==0,sumdiv(n,d,moebius(n/d)*3^d)/n)
Formula
a(n) = (1/n)*Sum_{d|n} mu(d)*3^(n/d).
(1 - 3*x) = Product_{n>0} (1 - x^n)^a(n).
G.f.: k = 3, 1 - Sum_{i >= 1} mu(i)*log(1 - k*x^i)/i. - Herbert Kociemba, Nov 25 2016
a(n) ~ 3^n / n. - Vaclav Kotesovec, Jul 01 2018
Comments