cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027378 Expansion of (1+x^2-x^3)/(1-x)^4.

Original entry on oeis.org

1, 4, 11, 23, 41, 66, 99, 141, 193, 256, 331, 419, 521, 638, 771, 921, 1089, 1276, 1483, 1711, 1961, 2234, 2531, 2853, 3201, 3576, 3979, 4411, 4873, 5366, 5891, 6449, 7041, 7668, 8331, 9031, 9769, 10546
Offset: 0

Views

Author

Keywords

Comments

If Y is a 3-subset of an n-set X then, for n>=4, a(n-4) is the number of (n-3)-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007

Crossrefs

Appears to be first differences of A252814.
First differences at A027379 (omitting first term).

Programs

  • Magma
    [(n^3 +9*n^2 +8*n +6)/6: n in [0..50]]; // G. C. Greubel, Jul 30 2022
    
  • Mathematica
    CoefficientList[Series[(1+x^2-x^3)/(1-x)^4,{x,0,50}],x] (* or *) LinearRecurrence[{4,-6,4,-1},{1,4,11,23},50] (* Harvey P. Dale, May 17 2021 *)
  • SageMath
    [(n^3 +9*n^2 +8*n +6)/6 for n in (0..50)] # G. C. Greubel, Jul 30 2022

Formula

a(n) = binomial(n+4, 3) - 3*(n+1). - Milan Janjic, Dec 28 2007 [Correction by Mathew Englander, Feb 03 2022]
a(n) = A006503(n) + 1 = A034857(n) + 5 = A116721(n+2) - 1 = A006416(n+1) + 3. - Mathew Englander, Feb 03 2022
E.g.f.: (1/6)*(6 + 18*x + 12*x^2 + x^3)*exp(x). - G. C. Greubel, Jul 30 2022