cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027425 Number of distinct products ijk with 1 <= i,j,k <= n.

Original entry on oeis.org

1, 4, 10, 16, 30, 40, 65, 80, 100, 120, 173, 194, 266, 301, 343, 378, 492, 536, 678, 732, 804, 876, 1075, 1130, 1247, 1343, 1450, 1537, 1833, 1909, 2248, 2362, 2515, 2668, 2850, 2940, 3400, 3587, 3789, 3919, 4477, 4624, 5242, 5440, 5654, 5916
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (nub)
    a027425 n = length $ nub [i*j*k | i <- [1..n], j <- [1..n], k <- [1..n]]
    -- Reinhard Zumkeller, Jan 01 2012
    
  • Maple
    f:=proc(n) local i,j,k,t1,t2; t1:={}; for i from 1 to n do for j from i to n do for k from j to n do t1:={op(t1),i*j*k}; od: od: od: t1:=convert(t1,list); nops(t1); end;
  • Mathematica
    a[n_] := Reap[Do[Sow[i*j*k], {i, 1, n}, {j, i, n}, {k, j, n}]][[2, 1]] // Union // Length; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Jan 30 2018 *)
  • PARI
    pr(n)=my(v=List());for(i=1,n, for(j=i,n, listput(v, i*j))); Set(v)
    a(n)=my(v=pr(n),u=v); for(i=2,n,u=Set(concat(u,v*i))); #u \\ Charles R Greathouse IV, Mar 04 2014
    
  • Python
    def A027425(n): return len({i*j*k for i in range(1,n+1) for j in range(1,i+1) for k in range(1,j+1)}) # Chai Wah Wu, Oct 16 2023

Formula

a(n) = A027426(n)-1. - T. D. Noe, Jan 16 2007