A027428 Number of distinct products ij with 1 <= i < j <= n. (Number of terms appearing more than once in a 1-to-n multiplication table.)
0, 1, 3, 6, 10, 13, 19, 24, 31, 36, 46, 51, 63, 70, 78, 87, 103, 111, 129, 139, 150, 161, 183, 192, 210, 223, 239, 252, 280, 291, 321, 337, 354, 371, 390, 403, 439, 458, 478, 493, 533, 549, 591, 611, 631, 654, 700, 717, 752, 774, 800, 823, 875
Offset: 1
Links
- Branden Aldridge, Table of n, a(n) for n = 1..20000 (terms 1..1000 from T. D. Noe).
Programs
-
Haskell
import Data.List (nub) a027428 n = length $ nub [i*j | j <- [2..n], i <- [1..j-1]] -- Reinhard Zumkeller, Jan 01 2012
-
Maple
f:=proc(n) local i,j,t1,t2; t1:={}; for i from 1 to n-1 do for j from i+1 to n do t1:={op(t1),i*j}; od: od: t1:=convert(t1,list); nops(t1); end;
-
Mathematica
a[n_] := Table[i*j, {i, 1, n-1}, {j, i+1, n}] // Flatten // Union // Length; Table[ a[n] , {n, 1, 53}] (* Jean-François Alcover, Jan 31 2013 *)
-
Python
def A027428(n): return len({i*j for i in range(1,n+1) for j in range(1,i)}) # Chai Wah Wu, Oct 13 2023