cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027429 Number of distinct products ijk with 0 <= i < j < k <= n.

Original entry on oeis.org

0, 0, 1, 2, 5, 11, 17, 30, 43, 61, 76, 112, 127, 178, 207, 239, 275, 362, 397, 508, 555, 614, 678, 839, 884, 1005, 1093, 1199, 1278, 1530, 1591, 1882, 1999, 2134, 2276, 2433, 2519, 2922, 3097, 3279, 3392, 3885, 4015, 4564, 4751, 4939, 5187, 5841, 5988, 6423
Offset: 0

Views

Author

Keywords

Examples

			a(3) = 2 (0 and 6 being the only products) and a(4) = 5 (with products 0, 6, 8, 12 and 24).
		

Crossrefs

Programs

  • Haskell
    import Data.List (nub)
    a027429 n = length $ nub [i*j*k | k<-[2..n], j<-[1..k-1], i<-[0..j-1]]
    -- Reinhard Zumkeller, Jan 01 2012
    
  • Mathematica
    nn=50; prod=Table[0, {1+nn^3}]; t=Table[Do[prod[[1+i*j*k]]=1, {i,0,n}, {j,i+1,n}, {k,j+1,n}]; Count[Take[prod,1+n^3],1], {n,0,nn}] (* T. D. Noe, Jan 16 2007 *)
  • Python
    from itertools import combinations as C
    def a(n): return len(set(i*j*k for i, j, k in C(range(n+1), 3)))
    print([a(n) for n in range(50)]) # Michael S. Branicky, May 28 2021

Formula

a(n) = A027430(n) + 1. - T. D. Noe, Jan 16 2007

Extensions

Corrected by T. D. Noe, Jan 16 2007