A027446 Triangle read by rows: square of the lower triangular mean matrix.
1, 3, 1, 11, 5, 2, 25, 13, 7, 3, 137, 77, 47, 27, 12, 147, 87, 57, 37, 22, 10, 1089, 669, 459, 319, 214, 130, 60, 2283, 1443, 1023, 743, 533, 365, 225, 105, 7129, 4609, 3349, 2509, 1879, 1375, 955, 595, 280, 7381, 4861, 3601, 2761, 2131, 1627, 1207, 847, 532, 252
Offset: 1
Examples
Triangle starts 1 3, 1 11, 5, 2 25, 13, 7, 3 137, 77, 47, 27, 12 147, 87, 57, 37, 22, 10 1089, 669, 459, 319, 214, 130, 60 2283, 1443, 1023, 743, 533, 365, 225, 105 7129, 4609, 3349, 2509, 1879, 1375, 955, 595, 280 ... - _Joerg Arndt_, Mar 29 2013
Links
- L. Bendersky, Sur la fonction gamma généralisée, Acta Math. 61 (1933), p. 263-322. See p. 295.
Crossrefs
Programs
-
Mathematica
rows = 10; M = MatrixPower[Table[If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}], 2]; T = Table[M[[n]]*LCM @@ Denominator[M[[n]]], {n, 1, rows}]; Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 05 2013, updated May 06 2022 *)
-
PARI
A027446_upto(n)={my(M=matrix(n, n, i, j, (j<=i)/i)^2); vector(n,r,M[r,1..r]*denominator(M[r,1..r]))} \\ M. F. Hasler, Nov 05 2019
Formula
Extensions
Edited by M. F. Hasler, Nov 05 2019
Comments