cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027467 Triangle whose (n,k)-th entry is 15^(n-k)*binomial(n,k).

Original entry on oeis.org

1, 15, 1, 225, 30, 1, 3375, 675, 45, 1, 50625, 13500, 1350, 60, 1, 759375, 253125, 33750, 2250, 75, 1, 11390625, 4556250, 759375, 67500, 3375, 90, 1, 170859375, 79734375, 15946875, 1771875, 118125, 4725, 105, 1, 2562890625, 1366875000, 318937500, 42525000, 3543750, 189000, 6300, 120, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
           1;
          15,          1;
         225,         30,         1;
        3375,        675,        45,        1;
       50625,      13500,      1350,       60,       1;
      759375,     253125,     33750,     2250,      75,      1;
    11390625,    4556250,    759375,    67500,    3375,     90,    1;
   170859375,   79734375,  15946875,  1771875,  118125,   4725,  105,   1;
  2562890625, 1366875000, 318937500, 42525000, 3543750, 189000, 6300, 120, 1;
		

Crossrefs

Sequences of the form q^(n-k)*binomial(n, k): A007318 (q=1), A038207 (q=2), A027465 (q=3), A038231 (q=4), A038243 (q=5), A038255 (q=6), A027466 (q=7), A038279 (q=8), A038291 (q=9), A038303 (q=10), A038315 (q=11), A038327 (q=12), A133371 (q=13), A147716 (q=14), this sequence (q=15).

Programs

  • Magma
    [(15)^(n-k)*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 12 2021
    
  • Mathematica
    Table[Binomial[n,k]15^(n-k),{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Dec 31 2017 *)
  • Sage
    flatten([[(15)^(n-k)*binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 12 2021

Formula

Numerators of lower triangle of (a[i,j])^4 where a[i,j] = binomial(i-1, j-1)/2^(i-1) if j<=i, 0 if j>i.
Sum_{k=0..n} T(n,k)*x^k = (15 + x)^n.

Extensions

Simpler definition from Philippe Deléham, Nov 10 2008