A027467 Triangle whose (n,k)-th entry is 15^(n-k)*binomial(n,k).
1, 15, 1, 225, 30, 1, 3375, 675, 45, 1, 50625, 13500, 1350, 60, 1, 759375, 253125, 33750, 2250, 75, 1, 11390625, 4556250, 759375, 67500, 3375, 90, 1, 170859375, 79734375, 15946875, 1771875, 118125, 4725, 105, 1, 2562890625, 1366875000, 318937500, 42525000, 3543750, 189000, 6300, 120, 1
Offset: 0
Examples
Triangle begins: 1; 15, 1; 225, 30, 1; 3375, 675, 45, 1; 50625, 13500, 1350, 60, 1; 759375, 253125, 33750, 2250, 75, 1; 11390625, 4556250, 759375, 67500, 3375, 90, 1; 170859375, 79734375, 15946875, 1771875, 118125, 4725, 105, 1; 2562890625, 1366875000, 318937500, 42525000, 3543750, 189000, 6300, 120, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
[(15)^(n-k)*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 12 2021
-
Mathematica
Table[Binomial[n,k]15^(n-k),{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Dec 31 2017 *)
-
Sage
flatten([[(15)^(n-k)*binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 12 2021
Formula
Numerators of lower triangle of (a[i,j])^4 where a[i,j] = binomial(i-1, j-1)/2^(i-1) if j<=i, 0 if j>i.
Sum_{k=0..n} T(n,k)*x^k = (15 + x)^n.
Extensions
Simpler definition from Philippe Deléham, Nov 10 2008