A027569 Initial members of prime decaplets (p, p+2, p+6, p+8, p+12, p+18, p+20, p+26, p+30, p+32).
11, 33081664151, 83122625471, 294920291201, 573459229151, 663903555851, 688697679401, 730121110331, 1044815397161, 1089869189021, 1108671297731, 1235039237891, 1291458592421, 1738278660731
Offset: 1
Keywords
Links
- Matt C. Anderson and Dana Jacobsen, Table of n, a(n) for n = 1..10000 [first 100 terms from Matt C. Anderson]
- Tony Forbes and Norman Luhn, Prime k-tuplets
- Norman Luhn, 1 million terms of A027569, zip compressed (7.93 MB) (2021)
Programs
-
Maple
composite_small := proc (n::integer) description "procedure to determine if n has a prime factor less than 100"; if igcd(2305567963945518424753102147331756070, n) = 1 then return false else return true end if; end proc; # begin initialization section p := [0, 2, 6, 8, 12, 18, 20, 26, 30, 32]; o := [1271, 1691]; m := 2310; # end initialization section with(ArrayTools); os := Size(o, 2); ps := Size(p, 2); loopstop := 10^11; loopstart := 0; print(11); for n from loopstart to loopstop do for a to os do counter := 0; wc := 0; wd := 0; while `and`(wd > -10, wd < ps) do wd := wd+1; if composite_small(m*n+o[a]+p[wd]) = false then wd := wd+1 else wd := -10 end if; end do; if wd >= 9 then while `and`(counter >= 0, wc < ps) do wc := wc+1; if isprime(m*n+o[a]+p[wc]) then counter := counter+1 else counter := -1 end if end do; end if; if counter = ps then print(m*n+o[a]); end if; end do; end do; # Matt C. Anderson, Apr 30 2015
-
PARI
is(n)=isprime(n) && isprime(n+2) && isprime(n+6) && isprime(n+8) && isprime(n+12) && isprime(n+18) && isprime(n+20) && isprime(n+26) && isprime(n+30) && isprime(n+32) v=primes(10); t=1; forprime(p=31,1e11, v[t]=p; t=(t%10)+1; if(p-v[t]==32 && is(v[t]), print1(v[t]", "))) \\ Charles R Greathouse IV, May 20 2015
-
Perl
use ntheory ":all"; say for sieve_prime_cluster(1,1e13, 2,6,8,12,18,20,26,30,32); # Dana Jacobsen, Sep 30 2015
Comments