cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A331728 Negabinary-Niven numbers: numbers divisible by the sum of digits in their negabinary representation (A027615).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 32, 33, 35, 36, 40, 42, 48, 50, 52, 54, 56, 57, 60, 62, 63, 64, 66, 68, 69, 72, 76, 78, 80, 81, 84, 88, 90, 91, 95, 96, 100, 102, 108, 110, 112, 114, 120, 124, 125, 126, 128, 129, 132, 136, 138, 140
Offset: 1

Views

Author

Amiram Eldar, Jan 27 2020

Keywords

Examples

			6 is a term since A039724(6) = 11010 and 1 + 1 + 0 + 1 + 0 = 3 is a divisor of 6.
		

Crossrefs

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n==0, 0, negaBinWt[Quotient[n-1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[n]]; Select[Range[100], negaBinNivenQ]

A331819 Positive numbers k such that -k is a negative negabinary-Niven number, i.e., divisible by the sum of digits of its negabinary representation (A027615).

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 28, 30, 32, 33, 34, 36, 39, 40, 42, 44, 48, 54, 55, 56, 60, 63, 64, 66, 68, 70, 72, 77, 78, 80, 84, 90, 92, 96, 100, 102, 104, 108, 111, 112, 114, 115, 116, 120, 123, 124, 126, 128, 129, 130, 132, 135, 136, 138, 140
Offset: 1

Views

Author

Amiram Eldar, Jan 27 2020

Keywords

Examples

			6 is a term since A039724(-6) = 1110 and 1 + 1 + 1 + 0 = 3 is a divisor of 6.
		

Crossrefs

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n==0, 0, negaBinWt[Quotient[n-1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[-n]]; Select[Range[100], negaBinNivenQ]

A331820 Positive numbers k such that k and k + 1 are both negabinary-Niven numbers (A331728).

Original entry on oeis.org

1, 2, 3, 8, 14, 15, 20, 32, 35, 56, 62, 63, 68, 80, 90, 95, 124, 125, 128, 174, 184, 185, 215, 224, 244, 245, 248, 254, 255, 260, 272, 275, 300, 304, 305, 320, 335, 342, 468, 469, 484, 485, 512, 515, 544, 545, 552, 575, 594, 636, 720, 762, 784, 785, 804, 846, 896
Offset: 1

Views

Author

Amiram Eldar, Jan 27 2020

Keywords

Examples

			8 is a term since both 8 and 8 + 1 = 9 are negabinary-Niven numbers: A039724(8) = 11000 and 1 + 1 + 0 + 0 + 0 = 2 is a divisor of 8, and A039724(9) = 11001 and 1 + 1 + 0 + 0 + 1 = 3 is a divisor of 9.
		

Crossrefs

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n == 0, 0, negaBinWt[Quotient[n - 1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[n]]; c = 0; k = 1; s = {}; v = Table[-1, {2}]; While[c < 60, If[negaBinNivenQ[k], v = Join[Rest[v], {k}]; If[AllTrue[Differences[v], # == 1 &], c++; AppendTo[s, k - 1]]]; k++]; s

A331822 Starts of runs of 3 consecutive positive negabinary-Niven numbers (A331728).

Original entry on oeis.org

1, 2, 14, 62, 124, 184, 244, 254, 304, 468, 484, 544, 784, 904, 964, 1022, 1084, 1098, 1144, 1264, 1265, 1308, 1448, 1504, 1518, 1924, 1938, 1984, 2044, 2104, 2105, 2358, 2888, 2944, 2945, 3064, 3198, 3248, 3424, 3544, 3604, 3618, 3664, 3828, 3844, 3904, 3964
Offset: 1

Views

Author

Amiram Eldar, Jan 27 2020

Keywords

Crossrefs

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n == 0, 0, negaBinWt[Quotient[n - 1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[n]]; nConsec = 3; neg = negaBinNivenQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec+1; While[c < 50, If[And @@ neg, c++; AppendTo[seq, k - nConsec]]; neg = Join[Rest[neg], {negaBinNivenQ[k]}]; k++]; seq

A331824 Starts of runs of 4 consecutive positive negabinary-Niven numbers (A331728).

Original entry on oeis.org

1, 1264, 2104, 2944, 4624, 11888, 23768, 27312, 27728, 31688, 35648, 49144, 51488, 55448, 56704, 58384, 60072, 63424, 65104, 66784, 70144, 71288, 75248, 76452, 79208, 81904, 87128, 91088, 92832, 99008, 102968, 114848, 118808, 123904, 125592, 126728, 130624, 131044
Offset: 1

Views

Author

Amiram Eldar, Jan 27 2020

Keywords

Crossrefs

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n == 0, 0, negaBinWt[Quotient[n - 1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[n]]; nConsec = 4; neg = negaBinNivenQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec+1; While[c < 45, If[And @@ neg, c++; AppendTo[seq, k - nConsec]]; neg = Join[Rest[neg], {negaBinNivenQ[k]}]; k++]; seq

A320642 Number of 1's in the base-(-2) expansion of -n.

Original entry on oeis.org

2, 1, 3, 2, 4, 3, 2, 1, 3, 2, 4, 3, 5, 4, 3, 2, 4, 3, 5, 4, 6, 5, 4, 3, 5, 4, 3, 2, 4, 3, 2, 1, 3, 2, 4, 3, 5, 4, 3, 2, 4, 3, 5, 4, 6, 5, 4, 3, 5, 4, 6, 5, 7, 6, 5, 4, 6, 5, 4, 3, 5, 4, 3, 2, 4, 3, 5, 4, 6, 5, 4, 3, 5, 4, 6, 5, 7, 6, 5, 4, 6, 5, 7, 6, 8, 7, 6
Offset: 1

Views

Author

Jianing Song, Oct 18 2018

Keywords

Comments

Number of 1's in A212529(n).
Define f(n) as: f(0) = 0, f(-2*n) = f(n), f(-2*n+1) = f(n) + 1, then a(n) = f(-n), n >= 1. See A027615 for the other half of f.
For k > 1, the earliest occurrence of k is n = A086893(k-1).

Examples

			A212529(11) = 110101 which has four 1's, so a(11) = 4.
A212529(25) = 111011 which has five 1's, so a(25) = 5.
A212529(51) = 11011101 which has six 1's, so a(51) = 6.
		

Crossrefs

Programs

  • Mathematica
    b[n_] := b[n] = b[Quotient[n - 1, -2]] + Mod[n, 2]; b[0] = 0; a[n_] := b[-n]; Array[a, 100] (* Amiram Eldar, Jul 23 2023 *)
  • PARI
    b(n) = if(n==0, 0, b(n\(-2))+n%2)
    a(n) = b(-n)

Formula

a(n) == -n (mod 3).
a(n) = A000120(A005352(n)). - Michel Marcus, Oct 23 2018

A331821 Positive numbers k such that -k and -(k + 1) are both negabinary-Niven numbers (A331728).

Original entry on oeis.org

2, 3, 8, 9, 15, 24, 27, 32, 33, 39, 54, 55, 63, 77, 111, 114, 115, 123, 128, 129, 135, 144, 159, 174, 175, 203, 234, 235, 245, 255, 264, 294, 295, 329, 370, 371, 384, 413, 414, 415, 444, 447, 474, 475, 495, 504, 507, 512, 513, 519, 534, 535, 543, 580, 581, 624
Offset: 1

Views

Author

Amiram Eldar, Jan 27 2020

Keywords

Examples

			8 is a term since both -8 and -(8 + 1) = -9 are negabinary-Niven numbers: A039724(-8) = 1000 and 1 + 0 + 0 + 0 = 1 is a divisor of 8, and A039724(-9) = 1011 and 1 + 0 + 1 + 1 = 3 is a divisor of 9.
		

Crossrefs

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n == 0, 0, negaBinWt[Quotient[n - 1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[-n]]; c = 0; k = 1; s = {}; v = Table[-1, {2}]; While[c < 60, If[negaBinNivenQ[k], v = Join[Rest[v], {k}]; If[AllTrue[Differences[v], # == 1 &], c++; AppendTo[s, k - 1]]]; k++]; s

A331825 Positive numbers k such that -k, -(k + 1), -(k + 2), and -(k + 3) are 4 consecutive negative negabinary-Niven numbers (A331728).

Original entry on oeis.org

413, 2093, 3773, 4613, 7133, 7973, 8813, 10493, 11869, 15829, 16373, 23749, 30653, 31493, 34853, 35629, 37373, 39589, 40733, 49133, 51469, 54585, 55429, 63349, 64253, 65513, 67613, 70965, 75229, 91069, 98989, 102949, 103725, 106909, 110869, 114653, 129773, 131033
Offset: 1

Views

Author

Amiram Eldar, Jan 27 2020

Keywords

Crossrefs

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n == 0, 0, negaBinWt[Quotient[n - 1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[-n]]; nConsec = 4; neg = negaBinNivenQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec+1; While[c < 45, If[And @@ neg, c++; AppendTo[seq, k - nConsec]]; neg = Join[Rest[neg], {negaBinNivenQ[k]}]; k++]; seq

A331823 Positive numbers k such that -k, -(k + 1), and -(k + 2) are 3 consecutive negative negabinary-Niven numbers (A331728).

Original entry on oeis.org

2, 8, 32, 54, 114, 128, 174, 234, 294, 370, 413, 414, 474, 512, 534, 580, 654, 774, 894, 954, 1000, 1014, 1134, 1430, 1734, 1794, 1840, 1854, 1914, 1974, 2034, 2048, 2093, 2094, 2154, 2214, 2334, 2574, 2680, 2694, 2814, 2870, 3054, 3100, 3520, 3773, 3774, 3834
Offset: 1

Views

Author

Amiram Eldar, Jan 27 2020

Keywords

Crossrefs

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n == 0, 0, negaBinWt[Quotient[n - 1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[-n]]; nConsec = 3; neg = negaBinNivenQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec+1; While[c < 50, If[And @@ neg, c++; AppendTo[seq, k - nConsec]]; neg = Join[Rest[neg], {negaBinNivenQ[k]}]; k++]; seq

A331832 Numbers k such that all the divisors of k have an odd number of 1's in their negabinary representations.

Original entry on oeis.org

1, 3, 9, 11, 23, 29, 33, 41, 43, 47, 53, 59, 69, 71, 83, 89, 101, 103, 109, 113, 129, 131, 137, 139, 149, 151, 157, 163, 181, 191, 197, 199, 211, 227, 233, 239, 249, 251, 263, 269, 281, 283, 293, 307, 311, 317, 331, 349, 353, 367, 373, 379, 383, 389, 397, 401
Offset: 1

Views

Author

Amiram Eldar, Jan 28 2020

Keywords

Examples

			9 is a term since all of its divisors, 1, 3 and 9, or 1, 111, and 11001 in negabinary representation, have an odd number of 1's.
		

Crossrefs

Subsequence of A268273.

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n==0, 0, negaBinWt[Quotient[n-1, -2]] + Mod[n, 2]]; odNegaBinQ[n_] := OddQ[negaBinWt[n]]; seqQ[n_] := AllTrue[Divisors[n], odNegaBinQ]; Select[Range[401],seqQ]
Showing 1-10 of 11 results. Next