cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027638 Order of 2^n X 2^n unitary group H_n acting on Siegel modular forms.

Original entry on oeis.org

4, 96, 46080, 371589120, 48514675507200, 101643290713836748800, 3409750224676138896064512000, 1830483982118721406049481526345728000, 15723497752907010191583185709179507111362560000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A027638:= func< n | n eq 0 select 4 else 2^(n^2+2*n+2)*(&*[4^j-1: j in [1..n]]) >;
    [A027638(n): n in [0..15]]; // G. C. Greubel, Aug 04 2022
    
  • Maple
    seq( 2^(n^2+2*n+2)*product(4^i -1, i=1..n), n=0..12);
  • Mathematica
    Table[2^(n^2+2n+2) Product[4^k-1,{k,n}],{n,0,10}] (* Harvey P. Dale, May 21 2018 *)
  • PARI
    a(n) = my(ret=1); for(i=1,n, ret = ret<<(2*i)-ret); ret << (n^2+2*n+2); \\ Kevin Ryde, Aug 13 2022
  • SageMath
    from sage.combinat.q_analogues import q_pochhammer
    def A027638(n): return (-1)^n*2^(n^2 + 2*n + 2)*q_pochhammer(n, 4, 4)
    [A027638(n) for n in (0..15)] # G. C. Greubel, Aug 04 2022
    

Formula

a(n) = A003956(n)/2.
a(n) = 2^(n^2 + 2*n + 2) * Product_{j=1..n} (4^j - 1).
a(n) ~ c * 2^(2*n^2+3*n+2), where c = A100221. - Amiram Eldar, Jul 06 2025