cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027644 Denominators of poly-Bernoulli numbers B_n^(k) with k=2.

Original entry on oeis.org

1, 4, 36, 24, 450, 40, 2205, 168, 350, 120, 38115, 88, 40990950, 10920, 5005, 24, 130180050, 136, 1935088155, 3192, 177827650, 1320, 1539340803, 184, 304521767550, 10920, 37182145, 24, 2814316555050, 1160
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A027643.

Programs

  • Magma
    A027644:= func< n,k | Denominator( (&+[(-1)^(j+n)*Factorial(j)*StirlingSecond(n, j)/(j+1)^k: j in [0..n]]) ) >;
    [A027644(n,2): n in [0..30]]; // G. C. Greubel, Aug 02 2022
    
  • Maple
    a := n -> denom(add((-1)^(n-m)*m!*Stirling2(n, m)/(m+1)^2, m=0..n)):
    seq(a(n), n = 0..29);
  • Mathematica
    f[n_]:= (-1)^n*Sum[(-1)^m*m!*StirlingS2[n, m]/(m + 1)^2, {m, 0, n}];
    Table[Denominator[f[n]], {n, 0, 30}] (* Robert G. Wilson v, Oct 28 2004 *)
  • SageMath
    def A027644(n,k): return denominator( sum((-1)^(n+j)*factorial(j)*stirling_number2(n,j)/(j+1)^k for j in (0..n)) )
    [A027644(n,2) for n in (0..30)] # G. C. Greubel, Aug 02 2022

Formula

a(n) = denominator of Sum_{j=0..n} (-1)^(n+j) * j! * Stirling2(n, j) * (j+1)^(-k), for k = 2.