A027686 Number of ways to transform say (((((((ab)c)d)e)f)g)h) to (a(b(c(d(e(f(gh))))))) where there are n multiplications (hence n+1 variables) by repeatedly applying the one-way associative law ((xy)z) -> (x(yz)).
1, 1, 1, 2, 9, 98, 2981, 340549, 216569887, 994441978397, 36812710172987995, 12001387004225881846755, 37783429241635794906272195147, 1255674108542254217846031366276646429, 478743486470659944952229546087586449114251007, 2262324605850021060149051111359520226936424091385392945
Offset: 0
Keywords
References
- D. E. Knuth, The Art of Computer Programming, Vol. 4, Section 7.2.1.6, see solution to Exercise 34.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..18
- Luke Nelson, A recursion on maximal chains in the Tamari lattices, Discrete Mathematics 340.4 (2017): 661-677.
- Luke Nelson, A recursion on maximal chains in the Tamari lattices, arXiv:1709.02987 [math.CO], Sep 2017
- Wikipedia, Tamari lattice
Programs
-
Maple
s:= proc(n) s(n):=`if`(n=0, [], [s(n-1), []]) end: f:= l-> l=[] or l[1]=[] and f(l[2]): v:= proc(l) v(l):=`if`(f(l), [], [`if`(l[1]<>[], [l[1][1], [l[1][2], l[2]]], [][]), seq([w, l[2]], w=v(l[1])), seq([l[1], w], w=v(l[2]))]) end: p:= proc(l) p(l):=`if`(f(l), 1, add(p(w), w=v(l))) end: a:= n-> p(s(n)): seq(a(n), n=0..10); # Alois P. Heinz, Mar 17 2013
Extensions
a(9)-a(14), a(15) from Alois P. Heinz, Mar 17 2013, Mar 27 2013
Comments