cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A027722 Numbers k such that k^2+k+7 is a palindrome.

Original entry on oeis.org

0, 1, 17, 31, 177, 274, 280, 301, 313, 1777, 2764, 3001, 27259, 30001, 177237, 300001, 312208, 1762122, 3000001, 27515125, 30000001, 30122098, 300000001, 303758458, 2673533185, 2817818390, 3000000001, 3121001208, 26928832879, 28255878334, 30000000001
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits[n]}, d == Reverse[d]]; f[n_] := n^2 + n + 7; Select[Range[0, 10^5], palQ@ f@ # &] (* Giovanni Resta, Aug 29 2018 *)

Extensions

More terms from Giovanni Resta, Aug 28 2018

A027723 Palindromes of form k^2 + k + 7.

Original entry on oeis.org

7, 9, 313, 999, 31513, 75357, 78687, 90909, 98289, 3159513, 7642467, 9009009, 743080347, 900090009, 31413131413, 90000900009, 97474147479, 3105075705013, 9000009000009, 757082131280757, 900000090000009, 907340818043709, 90000000900000009, 92269201110296229
Offset: 1

Views

Author

Keywords

Comments

From Robert Israel, May 16 2018: (Start)
Palindromes m such that 4*m - 27 is a square.
Each term has an odd number of digits and ends in 3, 7 or 9.
Contains 9*(1+10^k+10^(2*k)) for each k>=1. (End)

Crossrefs

Programs

  • Maple
    R[1]:= [1,3,5,7,9]: X[1]:= R[1]:
    for k from 2 to 6 do
      R[k]:= map(t -> seq(10^(k-1)*j+t,j=0..9),R[k-1]);
    X[k]:= map(t -> seq(j+10*t,j=0..9),X[k-1])
    od:
    Res:= 7,9:
    for k from 1 to 6 do
      for j from 1 to 5*10^(k-1) do
          r:= 10^(k+1)*X[k][j]+R[k][j];
          for y from 0 to 9 do
            if issqr(4*(r+10^k*y)-27) then
              x:= r+10^k*y;
              Res:= Res,x;
            fi
    od od od:
    Res; # Robert Israel, May 16 2018

Extensions

More terms from Giovanni Resta, Aug 28 2018
Showing 1-2 of 2 results.