cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027801 a(n) = 5*(n+1)*binomial(n+4,5)/2.

Original entry on oeis.org

5, 45, 210, 700, 1890, 4410, 9240, 17820, 32175, 55055, 90090, 141960, 216580, 321300, 465120, 658920, 915705, 1250865, 1682450, 2231460, 2922150, 3782350, 4843800, 6142500, 7719075, 9619155, 11893770, 14599760, 17800200, 21564840, 25970560, 31101840, 37051245
Offset: 1

Views

Author

Thi Ngoc Dinh (via R. K. Guy)

Keywords

Comments

Number of 10-subsequences of [ 1, n ] with just 4 contiguous pairs.

Crossrefs

Cf. A051923.

Programs

  • Mathematica
    Table[5(n+1) Binomial[n+4,5]/2,{n,30}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{5,45,210,700,1890,4410,9240},30] (* Harvey P. Dale, Dec 13 2014 *)

Formula

G.f.: 5*(1+2x)*x/(1-x)^7.
a(n) = C(n+1, 2)*C(n+4, 4) - Zerinvary Lajos, May 10 2005, corrected by R. J. Mathar, Feb 13 2016
a(n) = 5*A051923(n-1).
From Amiram Eldar, Jan 28 2022: (Start)
Sum_{n>=1} 1/a(n) = 241/18 - 4*Pi^2/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi^2/3 - 64*log(2)/3 + 151/18. (End)