A027823 a(n) = 77*(n+1)*binomial(n+6,11).
462, 6468, 48048, 252252, 1051050, 3699696, 11435424, 31855824, 81477396, 193993800, 434546112, 923410488, 1873980108, 3651858672, 6864396000, 12493200720, 22086194130, 38030772780, 63935791920, 105157552500, 169513974630, 268241893920, 417265168320
Offset: 5
Links
- T. D. Noe, Table of n, a(n) for n = 5..1000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Crossrefs
Cf. A062190.
Programs
-
Mathematica
Table[77(n+1) Binomial[n+6,11],{n,5,40}] (* or *) LinearRecurrence[{13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1},{462,6468,48048,252252,1051050,3699696,11435424,31855824,81477396,193993800,434546112,923410488,1873980108},30] (* Harvey P. Dale, Oct 20 2016 *)
Formula
G.f.: 462*(1+x)*x^5/(1-x)^13.
a(n) = C(n+1, 6)*C(n+6, 6). - Zerinvary Lajos, Jun 08 2005; corrected by R. J. Mathar, Feb 13 2016
From Amiram Eldar, Feb 04 2022: (Start)
Sum_{n>=5} 1/a(n) = 10446403/176400 - 6*Pi^2.
Sum_{n>=5} (-1)^(n+1)/a(n) = 3*Pi^2 - 82899/2800. (End)
Comments