cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027855 Antimutinous numbers: n>1 such that n/p^k < p, where p is the largest prime dividing n and p^k is the highest power of p dividing n.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87
Offset: 1

Views

Author

Keywords

Comments

Numbers which can be expressed as m*p^k, for p prime and m < p and k > 0. List contains n if A006530(n) > A051119(n). - Harry Richman, Aug 19 2019

Crossrefs

Programs

  • Maple
    isA027855 := proc(n) local p,k,pk; if n <= 1 then false; else p := A006530(n) ; pk := p ; while n mod ( pk*p) = 0 do pk := pk*p ; od: if n< p*pk then true ; else false ; fi ; fi ; end proc:
    for n from 2 to 120 do if isA027855(n) then printf("%d, ",n) ; fi ; od: # R. J. Mathar, Dec 02 2007
  • Mathematica
    Select[Range@100, #1^(#2 + 1) & @@ FactorInteger[#][[-1]] > # &] (* Ivan Neretin, Jul 09 2015 *)
  • PARI
    is(n) = my(f = factor(n)); c = n\f[#f~, 1]^f[#f~, 2]; c < f[#f~, 1] \\ David A. Corneth, Aug 19 2019
  • Python
    from sympy import factorint, primefactors
    def a053585(n):
        if n==1: return 1
        p = primefactors(n)[-1]
        return p**factorint(n)[p]
    print([n for n in range(2, 301) if n//a053585(n)Indranil Ghosh, Jul 13 2017
    

Extensions

More terms from R. J. Mathar, Dec 02 2007