A027855 Antimutinous numbers: n>1 such that n/p^k < p, where p is the largest prime dividing n and p^k is the highest power of p dividing n.
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87
Offset: 1
Keywords
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isA027855 := proc(n) local p,k,pk; if n <= 1 then false; else p := A006530(n) ; pk := p ; while n mod ( pk*p) = 0 do pk := pk*p ; od: if n< p*pk then true ; else false ; fi ; fi ; end proc: for n from 2 to 120 do if isA027855(n) then printf("%d, ",n) ; fi ; od: # R. J. Mathar, Dec 02 2007
-
Mathematica
Select[Range@100, #1^(#2 + 1) & @@ FactorInteger[#][[-1]] > # &] (* Ivan Neretin, Jul 09 2015 *)
-
PARI
is(n) = my(f = factor(n)); c = n\f[#f~, 1]^f[#f~, 2]; c < f[#f~, 1] \\ David A. Corneth, Aug 19 2019
-
Python
from sympy import factorint, primefactors def a053585(n): if n==1: return 1 p = primefactors(n)[-1] return p**factorint(n)[p] print([n for n in range(2, 301) if n//a053585(n)
Indranil Ghosh, Jul 13 2017
Extensions
More terms from R. J. Mathar, Dec 02 2007
Comments