cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027870 Number of zero digits in 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 3, 1, 1, 1, 1, 1, 0, 1, 0, 2, 3, 2, 2, 2, 1, 1, 2, 2, 3, 2, 2, 2, 1, 1, 0, 1, 3, 3, 1, 0, 1, 1, 1, 0, 0, 2, 4, 2, 0, 2, 3, 1, 1, 0, 3, 5, 3, 3, 4, 2, 3, 4, 1, 1, 4, 5, 5, 6, 6, 7, 5, 5
Offset: 0

Views

Author

Keywords

Comments

I conjecture that any value x = 0, 1, 2, ... occurs only a finite number of times N(x) = 36, 41, 31, 34, 25, 32, 37, 23, 43, 47, 33, ... in this sequence, for the last time at well defined indices i(x) = 86, 229, 231, 359, 283, 357, 475, 476, 649, 733, 648, ... - M. F. Hasler, Jul 09 2025

Examples

			2^31 = 2147483648 so a(31) = 0 and 2^42 = 4398046511104 so a(42) = 2.
		

Crossrefs

Cf. A000079 (powers of 2), A007377 (2^n has no zeros).
Similar for other digits: A065712 (1's), A065710 (2's), A065714 (3's), A065715 (4's), A065716 (5's), A065717 (6's), A065718 (7's), A065719 (8's), A065744 (9's).
Cf. A031146 (index of first appearance of n in this sequence), A094776 (index of last occurrence of digit n in powers of 2).
Cf. A305932 (table with n in row a(n)).

Programs

  • Haskell
    a027870 = a055641 . a000079  -- Reinhard Zumkeller, Apr 30 2013
    
  • Mathematica
    Table[ Count[ IntegerDigits[2^n], 0], {n, 0, 100} ]
    DigitCount[2^Range[0,110],10,0] (* Harvey P. Dale, Nov 20 2011 *)
  • PARI
    A027870(n)=#select(d->!d,digits(2^n)) \\ M. F. Hasler, Jun 14 2018
    
  • Python
    def A027870(n):
        return str(2**n).count('0') # Chai Wah Wu, Feb 14 2020

Formula

a(n) = A055641(A000079(n)). - Reinhard Zumkeller, Apr 30 2013
a(A007377(n)) = 0; A224782(n) <= a(n). - Reinhard Zumkeller, Apr 30 2013

Extensions

Edited by M. F. Hasler, Jul 09 2025