cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027874 Minimal degree path length of a tree with n leaves.

Original entry on oeis.org

0, 4, 9, 16, 23, 30, 38, 46, 54, 64, 74, 84, 94, 104, 114, 124, 134, 144, 155, 166, 177, 188, 199, 210, 221, 232, 243, 256, 269, 282, 295, 308, 321, 334, 347, 360, 373, 386, 399, 412, 425, 438, 451, 464, 477, 490, 503, 516, 529, 542, 555, 568, 581, 594, 608
Offset: 1

Views

Author

Keywords

References

  • Theorem 5.4.9L in D. E. Knuth, `The Art of Computer Programming', Volume 3.

Crossrefs

Cf. A003314.

Programs

  • Maple
    a:= n-> (q-> `if`(n>2*3^q, 3*(q+1)*n+2*(n-3^(q+1)),
             3*q*n+4*(n-3^q)))(ilog[3](n)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Feb 22 2018
  • Mathematica
    a[n_] := For[q = 0, True, q++, If[2*3^(q-1) <= n <= 3^q, Return[3*q*n + 2*(n-3^q)], If[3^q <= n <= 2*3^q, Return[3*q*n + 4*(n-3^q)]]]]; Array[a, 55] (* Jean-François Alcover, Oct 26 2015 *)

Formula

a(n) = 3*q*n+2*(n-3^q), if 2*3^(q-1)<=n<=3^q; 3*q*n+4*(n-3^q), if 3^q<=n<=2*3^q.

Extensions

More terms from James Sellers