cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027906 Expansion of Product_{m>=1} (1+q^m)^(4*m).

Original entry on oeis.org

1, 4, 14, 48, 141, 396, 1058, 2696, 6646, 15884, 36956, 83976, 186849, 407864, 875030, 1847824, 3845520, 7895872, 16010610, 32088120, 63611656, 124817444, 242560418, 467095640, 891754784, 1688619460
Offset: 0

Views

Author

Keywords

Comments

In general, if g.f. = Product_{m>=1} (1+x^m)^(t*m) and t>=1, then a(n) ~ 2^(-2/3 - t/12) * exp((3/2)^(4/3) * t^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * t^(1/6) * Zeta(3)^(1/6) / (3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Aug 17 2015

Crossrefs

Cf. A026007 (t=1), A026011 (t=2), A027346 (t=3).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^(4*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 17 2015 *)

Formula

a(n) ~ exp(2^(-2/3) * 3^(4/3) * Zeta(3)^(1/3) * n^(2/3)) * Zeta(3)^(1/6) / (2^(2/3) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Aug 17 2015
G.f.: exp(4*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018