cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027931 T(n, 2n-8), T given by A027926.

Original entry on oeis.org

1, 2, 5, 13, 34, 88, 221, 530, 1204, 2587, 5270, 10220, 18955, 33775, 58060, 96647, 156299, 246280, 379051, 571103, 843944, 1225258, 1750255, 2463232, 3419366, 4686761, 6348772, 8506630, 11282393, 14822249, 19300198, 24922141
Offset: 4

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([4..40], n-> Sum([0..4], k-> Binomial(n-k, 8-2*k)) ); # G. C. Greubel, Sep 27 2019
  • Magma
    [&+[Binomial(n-k, 8-2*k): k in [0..4]] : n in [4..40]]; // G. C. Greubel, Sep 27 2019
    
  • Maple
    A027931 := proc(n)
        add(binomial(n-k,8-2*k),k=0..4) ;
    end proc: # R. J. Mathar, Oct 31 2015
  • Mathematica
    Sum[Binomial[Range[4,40] -k, 8-2*k], {k,0,4}] (* G. C. Greubel, Sep 27 2019 *)
  • PARI
    vector(40, n, sum(k=0,4, binomial(n+3-k, 8-2*k)) ) \\ G. C. Greubel, Sep 27 2019
    
  • Sage
    [sum(binomial(n-k, 8-2*k) for k in (0..4)) for n in (4..40)] # G. C. Greubel, Sep 27 2019
    

Formula

a(n) = Sum_{k=0..4} binomial(n-k, 8-2*k). - Len Smiley, Oct 20 2001
G.f.: x^4*(1 -7*x +23*x^2 -44*x^3 +55*x^4 -44*x^5 +23*x^6 -7*x^7+ x^8) / (1-x)^9 . - R. J. Mathar, Oct 31 2015