A027931 T(n, 2n-8), T given by A027926.
1, 2, 5, 13, 34, 88, 221, 530, 1204, 2587, 5270, 10220, 18955, 33775, 58060, 96647, 156299, 246280, 379051, 571103, 843944, 1225258, 1750255, 2463232, 3419366, 4686761, 6348772, 8506630, 11282393, 14822249, 19300198, 24922141
Offset: 4
Links
- G. C. Greubel, Table of n, a(n) for n = 4..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Programs
-
GAP
List([4..40], n-> Sum([0..4], k-> Binomial(n-k, 8-2*k)) ); # G. C. Greubel, Sep 27 2019
-
Magma
[&+[Binomial(n-k, 8-2*k): k in [0..4]] : n in [4..40]]; // G. C. Greubel, Sep 27 2019
-
Maple
A027931 := proc(n) add(binomial(n-k,8-2*k),k=0..4) ; end proc: # R. J. Mathar, Oct 31 2015
-
Mathematica
Sum[Binomial[Range[4,40] -k, 8-2*k], {k,0,4}] (* G. C. Greubel, Sep 27 2019 *)
-
PARI
vector(40, n, sum(k=0,4, binomial(n+3-k, 8-2*k)) ) \\ G. C. Greubel, Sep 27 2019
-
Sage
[sum(binomial(n-k, 8-2*k) for k in (0..4)) for n in (4..40)] # G. C. Greubel, Sep 27 2019
Formula
a(n) = Sum_{k=0..4} binomial(n-k, 8-2*k). - Len Smiley, Oct 20 2001
G.f.: x^4*(1 -7*x +23*x^2 -44*x^3 +55*x^4 -44*x^5 +23*x^6 -7*x^7+ x^8) / (1-x)^9 . - R. J. Mathar, Oct 31 2015