cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027936 Uniquification of array T given by A027935.

Original entry on oeis.org

1, 2, 4, 5, 7, 11, 12, 13, 16, 22, 26, 29, 33, 34, 37, 46, 51, 56, 67, 79, 88, 89, 92, 106, 121, 137, 154, 155, 172, 176, 191, 211, 221, 232, 233, 247, 254, 277, 301, 326, 352, 365, 376, 379, 407, 436, 466, 497, 529, 530, 551, 562, 596
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A027935.

Programs

  • Mathematica
    A027935[n_, k_]:= A027935[n, k]= Sum[Binomial[n-j, 2*(n-k-j)], {j,0,Floor[(2*n-2*k+ 1)/2]}];
    A027936= Table[A027935[n,k], {n,0,225}, {k,0,n}]//Flatten//Union;
    Table[A027936[[n]], {n,100}] (* G. C. Greubel, Jun 06 2025 *)
  • SageMath
    @CachedFunction
    def A027935(n,k): return sum(binomial(n-j, 2*(n-k-j)) for j in range(int((2*n-2*k+1)/2+1)) )
    A027936 = sorted(set(flatten([[ A027935(n,k) for k in range(n+1)] for n in range(103)])))
    print([A027936[n] for n in range(100)]) # G. C. Greubel, Jun 06 2025