cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027937 a(n) = T(2*n, n+1), T given by A027935.

Original entry on oeis.org

1, 7, 26, 79, 221, 596, 1581, 4163, 10926, 28635, 75001, 196392, 514201, 1346239, 3524546, 9227431, 24157781, 63245948, 165580101, 433494395, 1134903126, 2971215027, 7778742001, 20365011024, 53316291121
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..30], n-> Fibonacci(2*n+3) -2*(n+1) ); # G. C. Greubel, Sep 27 2019
  • Magma
    [Fibonacci(2*n+3) - 2*n - 2: n in [1..30]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    with(combinat); seq(fibonacci(2*n+3) -2*(n+1), n=1..30); # G. C. Greubel, Sep 27 2019
  • Mathematica
    Table[Fibonacci[2*n+3]-2*(n+1), {n,30}] (* G. C. Greubel, Sep 27 2019 *)
  • PARI
    vector(30, n, fibonacci(2*n+3)-2*(n+1)) \\ G. C. Greubel, Sep 27 2019
    
  • Sage
    [fibonacci(2*n+3) -2*(n+1) for n in (1..30)] # G. C. Greubel, Sep 27 2019
    

Formula

a(n) = Fibonacci(2*n+3) - 2*n - 2.
From R. J. Mathar, Feb 06 2010: (Start)
a(n) = 5*a(n-1) - 8*a(n-2) + 5*a(n-3) - a(n-4);
G.f.: x*(1 + 2*x - x^2)/((1-3*x+x^2)*(1-x)^2). (End)