A027939 a(n) = T(2*n, n+3), T given by A027935.
1, 29, 247, 1300, 5270, 18228, 56967, 166681, 467301, 1274856, 3419252, 9076280, 23945893, 62955061, 165188091, 432974764, 1134224458, 2970340412, 7777628427, 20363608737, 53314542953, 139581703056, 365432651464, 956718812272, 2504726904937, 6557465674125
Offset: 3
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-34,71,-90,71,-34,9,-1).
Programs
-
GAP
List([3..30], n-> Fibonacci(2*n+7) - (195 +186*n +90*n^2 +35*n^3 +4*n^5)/15 ); # G. C. Greubel, Sep 28 2019
-
Magma
[Fibonacci(2*n+7) - (195 +186*n +90*n^2 +35*n^3 +4*n^5)/15: n in [3..30]]; // G. C. Greubel, Sep 28 2019
-
Maple
with(combinat); seq(fibonacci(2*n+7) - (195 +186*n +90*n^2 +35*n^3 +4*n^5)/15, n=3..30); # G. C. Greubel, Sep 28 2019
-
Mathematica
Table[Fibonacci[2*n+7] -(195 +186*n +90*n^2 +35*n^3 +4*n^5)/15, {n,3,30}] (* G. C. Greubel, Sep 28 2019 *)
-
PARI
vector(30, n, my(m=n+2); fibonacci(2*m+7) - (195 +186*m +90*m^2 +35*m^3 +4*m^5)/15) \\ G. C. Greubel, Sep 28 2019
-
Sage
[fibonacci(2*n+7) - (195 +186*n +90*n^2 +35*n^3 +4*n^5)/15 for n in (3..30)] # G. C. Greubel, Sep 28 2019
Formula
G.f.: x^3*(1+20*x+20*x^2-8*x^3-x^4) / ((1-x)^6*(1-3*x+x^2)). - Colin Barker, Feb 20 2016
a(n) = Fibonacci(2*n+7) - (195 + 186*n + 90*n^2 + 35*n^3 + 4*n^5)/15. - G. C. Greubel, Sep 28 2019
Extensions
Terms a(23) onward added by G. C. Greubel, Sep 28 2019