cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027950 a(n) = T(2n,n+2), T given by A027948.

Original entry on oeis.org

1, 6, 63, 344, 1383, 4685, 14323, 41119, 113590, 306605, 816410, 2157046, 5674578, 14893364, 39040633, 102273950, 267839033, 701315739, 1836198205, 4807389285, 12586103720, 32951083211, 86267338468, 225851160284, 591286410708, 1548008385490
Offset: 2

Views

Author

Keywords

Crossrefs

Bisection of A053739.

Programs

  • GAP
    Concatenation([1], List([3..40], n-> Fibonacci(2*n+6) -(48 +47*n +23*n^2 +4*n^3 +4*n^4)/6) ); # G. C. Greubel, Sep 29 2019
  • Magma
    [1] cat [Fibonacci(2*n+6) -(48 +47*n +23*n^2 +4*n^3 +4*n^4)/6: n in [3..40]]; // G. C. Greubel, Sep 29 2019
    
  • Maple
    with(combinat); seq(`if`(n=2,1, fibonacci(2*n+6) -(48 +47*n +23*n^2 +4*n^3 +4*n^4)/6), n=2..40); # G. C. Greubel, Sep 29 2019
  • Mathematica
    Table[If[n==2, 1, Fibonacci[2*n+6] -(48 +47*n +23*n^2 +4*n^3 +4*n^4)/6], {n,2,40}] (* G. C. Greubel, Sep 29 2019 *)
    CoefficientList[Series[x^2(1-2x+41x^2-49x^3+44x^4-26x^5+8x^6-x^7)/ ((1-3x+x^2)(1-x)^5),{x,0,30}],x] (* or *) LinearRecurrence[{8,-26,45,-45,26,-8,1},{1,6,63,344,1383,4685,14323,41119},30] (* Harvey P. Dale, Aug 15 2021 *)
  • PARI
    Vec(x^2*(x^7-8*x^6+26*x^5-44*x^4+49*x^3-41*x^2+2*x-1)/((x-1)^5* (x^2-3*x+1)) + O(x^40)) \\ Colin Barker, Nov 19 2014
    
  • PARI
    vector(40, n, my(m=n+1); if(m==2, 1, fibonacci(2*m+6) -(48 +47*m +23*m^2 +4*m^3 +4*m^4)/6) ) \\ G. C. Greubel, Sep 29 2019
    
  • Sage
    [1]+[fibonacci(2*n+6) -(48 +47*n +23*n^2 +4*n^3 +4*n^4)/6 for n in (3..40)] # G. C. Greubel, Sep 29 2019
    

Formula

G.f.: x^2*(1-2*x+41*x^2-49*x^3+44*x^4-26*x^5+8*x^6-x^7)/((1-3*x+x^2)*(1-x)^5). - Ralf Stephan, Apr 24 2004
From G. C. Greubel, Sep 29 2019: (Start)
a(n) = Sum_{j=0..n-2} binomial(2*n-j, j+5), with a(2) = 1 for n >= 2.
a(n) = Fibonacci(2*n+6) - (48 + 47*n + 23*n^2 + 4*n^3 + 4*n^4)/6 for n >= 3. (End)

Extensions

More terms from Colin Barker, Nov 19 2014