cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027951 a(n) = T(2n,n+3), T given by A027948.

Original entry on oeis.org

1, 8, 129, 967, 4950, 20175, 70954, 226007, 672959, 1914166, 5280288, 14275838, 38102976, 100888126, 265838881, 698489013, 1832277574, 4802042229, 12578921258, 32941567397, 86254888591, 225835057708, 591265802288, 1547982265500, 4052706300752
Offset: 3

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([1], List([4..40], n-> Fibonacci(2*n+8) -(8*n^6 -12*n^5 +110*n^4 +255*n^3 +872*n^2 +1827*n +1890)/90) ); # G. C. Greubel, Sep 29 2019
  • Magma
    [1] cat [Fibonacci(2*n+8) -(8*n^6 -12*n^5 +110*n^4 +255*n^3 +872*n^2 +1827*n +1890)/90: n in [4..40]]; // G. C. Greubel, Sep 29 2019
    
  • Maple
    with(combinat); seq(`if`(n=3,1, fibonacci(2*n+8) -(8*n^6 -12*n^5 +110*n^4 +255*n^3 +872*n^2 +1827*n +1890)/90), n=3..40); # G. C. Greubel, Sep 29 2019
  • Mathematica
    CoefficientList[Series[(x^9 -10x^8 +43x^7 -105x^6 +162x^5 -148x^4 +84x^3 -92x^2 +2x -1)/((x-1)^7(x^2-3x+1)), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 20 2014 *)
    Table[If[n==3, 1, Fibonacci[2*n+8] -(8*n^6 -12*n^5 +110*n^4 +255*n^3 +872*n^2 +1827*n +1890)/90], {n,3,40}] (* G. C. Greubel, Sep 29 2019 *)
  • PARI
    Vec(x^3*(x^9-10*x^8+43*x^7-105*x^6+162*x^5-148*x^4+84*x^3-92*x^2 +2*x-1)/((x-1)^7*(x^2-3*x+1)) + O(x^40)) \\ Colin Barker, Nov 19 2014
    
  • PARI
    vector(40, n, my(m=n+2); if(m==3, 1, fibonacci(2*m+8) -(8*m^6 -12*m^5 +110*m^4 +255*m^3 +872*m^2 +1827*m +1890)/90) ) \\ G. C. Greubel, Sep 29 2019
    
  • Sage
    [1]+[fibonacci(2*n+8) -(8*n^6 -12*n^5 +110*n^4 +255*n^3 +872*n^2 +1827*n +1890)/90 for n in (4..40)] # G. C. Greubel, Sep 29 2019
    

Formula

G.f.: x^3*(1 -2*x +92*x^2 -84*x^3 +148*x^4 -162*x^5 +105*x^6 -43*x^7 +10*x^8 -x^9)/((1-x)^7*(1-3*x+x^2)). - Colin Barker, Nov 19 2014
From G. C. Greubel, Sep 29 2019: (Start)
a(n) = Sum_{j=0..n-3} binomial(2*n-j, j+7), with a(3) = 1 for n >= 3.
a(n) = Fibonacci(2*n+8) - (8*n^6 -12*n^5 +110*n^4 +255*n^3 +872*n^2 +1827*n +1890)/90 for n >= 4. (End)

Extensions

More terms from Colin Barker, Nov 19 2014