cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027956 a(n) = T(2n+1, n+4), T given by A027948.

Original entry on oeis.org

1, 9, 175, 1518, 8735, 39130, 148487, 502415, 1568062, 4622488, 13091798, 36067176, 97522270, 260459265, 690141333, 1819657318, 4783398669, 12551942930, 32903246829, 86201363911, 225761428636, 591165917888, 1547848480940, 4052529200192, 10609936578716, 27777538280521
Offset: 3

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([1], List([4..40], n-> Fibonacci(2*n+10) -(34650 +33360*n +16065*n^2 +5089*n^3 +1260*n^4 +280*n^5 +16*n^7)/630) ); # G. C. Greubel, Sep 30 2019
  • Magma
    [1] cat [Fibonacci(2*n+10) -(34650 +33360*n +16065*n^2 +5089*n^3 +1260*n^4 +280*n^5 +16*n^7)/630: n in [4..40]]; // G. C. Greubel, Sep 30 2019
    
  • Maple
    with(combinat); seq(`if`(n=3,1, fibonacci(2*n+10) -(34650 +33360*n +16065*n^2 +5089*n^3 +1260*n^4 +280*n^5 +16*n^7)/630), n=3..40); # G. C. Greubel, Sep 30 2019
  • Mathematica
    Table[If[n==3, 1, Fibonacci[2*n+10] -(34650 +33360*n +16065*n^2 +5089*n^3 +1260*n^4 +280*n^5 +16*n^7)/630], {n, 3, 40}] (* G. C. Greubel, Sep 30 2019 *)
    LinearRecurrence[{11,-53,148,-266,322,-266,148,-53,11,-1},{1,9,175,1518,8735,39130,148487,502415,1568062,4622488,13091798},40] (* Harvey P. Dale, Sep 12 2021 *)
  • PARI
    vector(40, n, my(m=n+2); if(m==3, 1, fibonacci(2*m+10) -(34650 +33360*m +16065*m^2 +5089*m^3 +1260*m^4 +280*m^5 +16*m^7)/630) ) \\ G. C. Greubel, Sep 30 2019
    
  • Sage
    [1]+[fibonacci(2*n+10) -(34650 +33360*n +16065*n^2 +5089*n^3 +1260*n^4 +280*n^5 +16*n^7)/630 for n in (4..40)] # G. C. Greubel, Sep 30 2019
    

Formula

From G. C. Greubel, Sep 30 2019: (Start)
a(n) = Sum_{j=0..n-3} binomial(2*n-j+1, j+8) for n >= 4.
a(n) = Fibonacci(2*n+10) - (34650 +33360*n +16065*n^2 +5089*n^3 +1260*n^4 +280*n^5 +16*n^7)/630 for n >= 4.
G.f.: x^3*(1 -2*x +129*x^2 -78*x^3 +246*x^4 -329*x^5 +266*x^6 -148*x^7 +53*x^8 -11*x^9 +x^10)/((1-x)^8*(1-3*x+x^2)). (End)

Extensions

Name corrected and terms a(22) onward by G. C. Greubel, Sep 30 2019