A027957 a(n) = greatest number in row n of array T given by A027948.
1, 1, 2, 3, 7, 14, 25, 46, 97, 189, 344, 674, 1383, 2683, 4950, 9955, 20175, 39130, 72905, 148487, 298925, 580328, 1089343, 2233409, 4478413, 8705686, 16438345, 33822205, 67650909, 131688362, 251448212, 515037942, 1028483089, 2004688605, 3860656125, 7878708566, 15715540623, 30670416703, 59451560083
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A027948.
Programs
-
Magma
A027948:= func< n,k | k eq n select 1 else (&+[Binomial(n-j, 2*(n-k-j)-1): j in [0..n-k]]) >; b:= func< n | [A027948(n,k): k in [0..n]] >; A027957:= func< n | Max( b(n) ) >; [A027957(n): n in [0..50]]; // G. C. Greubel, Jun 08 2025
-
Mathematica
A027948[n_, k_]:= A027948[n, k]= If[k==n, 1, Sum[Binomial[n-j, 2*(n-k-j)-1], {j,0,n- k}]]; b[n_]:= b[n]= Table[A027948[n,k], {k,0,n}]//Union; A027957[n_]:= Max[b[n]]; Table[A027957[n], {n,0,50}] (* G. C. Greubel, Jun 07 2025 *)
-
SageMath
@CachedFunction def A027948(n, k): if (k==n): return 1 else: return sum(binomial(n-j, 2*(n-k-j)-1) for j in (0..n-k)) def b(n): return sorted(set(flatten([ A027948(n,k) for k in range(n+1)]))) def A027957(n): return max(b(n)) print([A027957(n) for n in range(51)]) # G. C. Greubel, Jun 07 2025
Extensions
More terms added by G. C. Greubel, Jun 07 2025