A027958 a(n) = T(n,m) + T(n,m+1) + ... + T(n,n), where m = floor((n+2)/2), T given by A027948.
1, 1, 4, 5, 20, 32, 95, 169, 424, 793, 1816, 3488, 7583, 14789, 31172, 61357, 126892, 251200, 513343, 1019921, 2068496, 4119281, 8313584, 16580800, 33358015, 66594637, 133703500, 267089189, 535524644, 1070217248, 2143959071
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,4,-8,-4,8,1,-2).
Programs
-
GAP
F:=Fibonacci;; List([1..40], n-> (3 +(-1)^n +2^(n+1) -(-1)^n*F(n+1) -F(n+4))/2); # G. C. Greubel, Sep 30 2019
-
Magma
F:=Fibonacci; [(3 +(-1)^n +2^(n+1) -(-1)^n*F(n+1) -F(n+4))/2: n in [1..40]]; // G. C. Greubel, Sep 30 2019
-
Maple
f:= combinat[fibonacci]: seq((3 +(-1)^n +2^(n+1) -(-1)^n*f(n+1) -f(n+4))/2, n=1..40); # G. C. Greubel, Sep 30 2019
-
Mathematica
Table[(3 +(-1)^n +2^(n+1) -(-1)^n*Fibonacci[n+1] -Fibonacci[n+4])/2, {n,40}] (* G. C. Greubel, Sep 30 2019 *)
-
PARI
vector(40, n, f=fibonacci; (3 +(-1)^n +2^(n+1) -(-1)^n*f(n+1) -f(n+4))/2 ) \\ G. C. Greubel, Sep 30 2019
-
Sage
f=fibonacci; [(3 +(-1)^n +2^(n+1) -(-1)^n*f(n+1) -f(n+4))/2 for n in (1..40)] # G. C. Greubel, Sep 30 2019
Formula
G.f.: x*(1 -x -2*x^2 + x^3 +6*x^4 -2*x^6)/((1-2*x)*(1-x^2)(1+x-x^2)*(1-x-x^2)).
a(n) = (3 +(-1)^n +2^(n+1) -(-1)^n*Fibonacci(n+1) -Fibonacci(n+4))/2. - G. C. Greubel, Sep 30 2019
Comments