A027964 T(n,n+4), T given by A027960.
1, 7, 26, 73, 174, 373, 743, 1404, 2552, 4506, 7784, 13226, 22193, 36889, 60882, 99947, 163430, 266455, 433495, 704150, 1142496, 1852212, 3001056, 4860468, 7869649, 12739243, 20619098, 33369709, 54001422, 87385081
Offset: 4
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 4..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-9,6,1,-3,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^4*(1+2*x)/((1-x)^4*(1-x-x^2)) )); // G. C. Greubel, Jun 29 2019 -
Mathematica
Drop[CoefficientList[Series[x^4*(1+2*x)/((1-x)^4*(1-x-x^2)), {x,0,40}], x], 4] (* G. C. Greubel, Jun 29 2019 *)
-
PARI
my(x='x+O('x^40)); Vec(x^4*(1+2*x)/((1-x)^4*(1-x-x^2))) \\ G. C. Greubel, Jun 29 2019
-
Sage
a=(x^4*(1+2*x)/((1-x)^4*(1-x-x^2))).series(x, 40).coefficients(x, sparse=False); a[4:] # G. C. Greubel, Jun 29 2019
Formula
G.f.: x^4*(1+2*x)/((1-x)^4*(1-x-x^2)). - Ralf Stephan, Feb 07 2004