A027968 a(n) = T(n, 2*n-6), T given by A027960.
1, 4, 11, 29, 73, 171, 370, 743, 1397, 2482, 4201, 6821, 10685, 16225, 23976, 34591, 48857, 67712, 92263, 123805, 163841, 214103, 276574, 353511, 447469, 561326, 698309, 862021, 1056469, 1286093, 1555796, 1870975, 2237553
Offset: 3
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
A column of triangle A026998.
Programs
-
GAP
List([3..40], n-> (-7920 +7548*n -3176*n^2 +735*n^3 -65*n^4 -3*n^5 +n^6)/720) # G. C. Greubel, Jul 01 2019
-
Magma
[(-7920 +7548*n -3176*n^2 +735*n^3 -65*n^4 -3*n^5 +n^6)/720: n in [3..40]]; // G. C. Greubel, Jul 01 2019
-
Mathematica
Table[(-7920 +7548*n -3176*n^2 +735*n^3 -65*n^4 -3*n^5 +n^6)/720, {n,3,40}] (* G. C. Greubel, Jul 01 2019 *)
-
PARI
for(n=3,40, print1((-7920 +7548*n -3176*n^2 +735*n^3 -65*n^4 -3*n^5 +n^6)/720, ", ")) \\ G. C. Greubel, Jul 01 2019
-
Sage
[(-7920 +7548*n -3176*n^2 +735*n^3 -65*n^4 -3*n^5 +n^6)/720 for n in (3..40)] # G. C. Greubel, Jul 01 2019
Formula
From Ralf Stephan, Feb 07 2004: (Start)
G.f.: x^3*(1 -3*x +4*x^2 +x^3 -4*x^4 +3*x^5 -x^6)/(1-x)^7.
From G. C. Greubel, Jul 01 2019: (Start)
a(n) = (-7920 +7548*n -3176*n^2 +735*n^3 -65*n^4 -3*n^5 +n^6)/720.
E.g.f.: (7920 +2880*x +360*x^2 -(7920 -5040*x +1440*x^2 -360*x^3 +30*x^4 -12*x^5 -x^6)*exp(x))/6!. (End)