cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A027960 'Lucas array': triangular array T read by rows.

Original entry on oeis.org

1, 1, 3, 1, 1, 3, 4, 4, 1, 1, 3, 4, 7, 8, 5, 1, 1, 3, 4, 7, 11, 15, 13, 6, 1, 1, 3, 4, 7, 11, 18, 26, 28, 19, 7, 1, 1, 3, 4, 7, 11, 18, 29, 44, 54, 47, 26, 8, 1, 1, 3, 4, 7, 11, 18, 29, 47, 73, 98, 101, 73, 34, 9, 1, 1, 3, 4, 7, 11, 18, 29, 47, 76, 120, 171, 199, 174, 107, 43, 10, 1
Offset: 0

Views

Author

Keywords

Comments

The k-th row contains 2k+1 numbers.
Columns in the right half consist of convolutions of the Lucas numbers with the natural numbers.
T(n,k) = number of strings s(0),...,s(n) such that s(n)=n-k. s(0) in {0,1,2}, s(1)=1 if s(0) in {1,2}, s(1) in {0,1,2} if s(0)=0 and for 1 <= i <= n, s(i) = s(i-1)+d, with d in {0,2} if s(i)=2i, in {0,1,2} if s(i)=2i-1, in {0,1} if 0 <= s(i) <= 2i-2.

Examples

			                           1
                       1,  3,  1
                   1,  3,  4,  4,  1
               1,  3,  4,  7,  8,  5,   1
           1,  3,  4,  7, 11, 15, 13,   6,  1
        1, 3,  4,  7, 11, 18, 26, 28,  19,  7,  1
     1, 3, 4,  7, 11, 18, 29, 44, 54,  47, 26,  8, 1
  1, 3, 4, 7, 11, 18, 29, 47, 73, 98, 101, 73, 34, 9, 1
		

Crossrefs

Central column is the Lucas numbers without initial 2: A000204.
Columns in the right half include A027961, A027962, A027963, A027964, A053298.
Bisection triangles are in A026998 and A027011.
Row sums: A036563, A153881 (alternating sign).
Diagonals of the form T(n, 2*n-p): A000012 (p=0), A000027 (p=1), A034856 (p=2), A027965 (p=3), A027966 (p=4), A027967 (p=5), A027968 (p=6), A027969 (p=7), A027970 (p=8), A027971 (p=9), A027972 (p=10).
Diagonals of the form T(n, n+p): A000032 (p=0), A027961 (p=1), A023537 (p=2), A027963 (p=3), A027964 (p=4), A053298 (p=5), A027002 U A027018 (p=6), A027007 U A027014 (p=7), A027003 U A027019 (p=8).

Programs

  • Magma
    function T(n,k) // T = A027960
          if k le n then return Lucas(k+1);
          elif k gt 2*n then return 0;
          else return T(n-1, k-2) + T(n-1, k-1);
          end if;
    end function;
    [T(n,k): k in [0..2*n], n in [0..12]]; // G. C. Greubel, Jun 08 2025
  • Maple
    T:=proc(n,k)option remember:if(k=0 or k=2*n)then return 1:elif(k=1)then return 3:else return T(n-1,k-2) + T(n-1,k-1):fi:end:
    for n from 0 to 6 do for k from 0 to 2*n do print(T(n,k));od:od: # Nathaniel Johnston, Apr 18 2011
  • Mathematica
    (* First program *)
    t[, 0] = 1; t[, 1] = 3; t[n_, k_] /; (k == 2*n) = 1; t[n_, k_] := t[n, k] = t[n-1, k-2] + t[n-1, k-1]; Table[t[n, k], {n, 0, 8}, {k, 0, 2*n}] // Flatten (* Jean-François Alcover, Dec 27 2013 *)
    (* Second program *)
    f[n_, k_]:= f[n,k]= Sum[Binomial[2*n-k+j,j]*LucasL[2*(k-n-j)], {j,0,k-n-1}];
    A027960[n_, k_]:= LucasL[k+1] - f[n,k]*Boole[k>n];
    Table[A027960[n,k], {n,0,12}, {k,0,2*n}]//Flatten (* G. C. Greubel, Jun 08 2025 *)
  • PARI
    T(r,n)=if(r<0||n>2*r,return(0)); if(n==0||n==2*r,return(1)); if(n==1,3,T(r-1,n-1)+T(r-1,n-2)) /* Ralf Stephan, May 04 2005 */
    
  • SageMath
    @CachedFunction
    def T(n, k): # T = A027960
        if (k>2*n): return 0
        elif (kG. C. Greubel, Jun 01 2019; Jun 08 2025
    

Formula

T(n, k) = Lucas(k+1) for k <= n, otherwise the (2n-k)th coefficient of the power series for (1+2*x)/{(1-x-x^2)*(1-x)^(k-n)}.
Recurrence: T(n, 0)=T(n, 2n)=1 for n >= 0; T(n, 1)=3 for n >= 1; and for n >= 2, T(n, k) = T(n-1, k-2) + T(n-1, k-1) for 2 <= k <= 2*n-1.
From G. C. Greubel, Jun 08 2025: (Start)
T(n, k) = A000032(k+1) - f(n, k)*[k > n], where f(n, k) = Sum_{j=0..k-n-1} binomial(2*n -k+j, j)*A000032(2*(k-n-j)).
Sum_{k=0..A004396(n+1)} T(n-k, k) = A027975(n).
Sum_{k=0..n} T(n, k) = A027961(n).
Sum_{k=0..2*n} T(n, k) = A168616(n+2) + 2.
Sum_{k=n+1..2*n} (-1)^k*T(n, k) = A075193(n-1), n >= 1. (End)

Extensions

Edited by Ralf Stephan, May 04 2005

A026998 Triangular array T read by rows: T(n, k) = t(n, 2k), t given by A027960, 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 4, 8, 1, 1, 4, 11, 13, 1, 1, 4, 11, 26, 19, 1, 1, 4, 11, 29, 54, 26, 1, 1, 4, 11, 29, 73, 101, 34, 1, 1, 4, 11, 29, 76, 171, 174, 43, 1, 1, 4, 11, 29, 76, 196, 370, 281, 53, 1, 1, 4, 11, 29, 76, 199, 487, 743, 431, 64, 1
Offset: 0

Views

Author

Keywords

Comments

Right-edge columns are polynomials approximating Lucas(2n+1).

Examples

			  .................................... 1;
  ................................. 1, 1;
  ............................. 1,  4, 1;
  ........................ 1,   4,  8, 1;
  ................... 1,   4,  11, 13, 1;
  .............. 1,   4,  11,  26, 19, 1;
  .......... 1,  4,  11,  29,  54, 26, 1;
  ...... 1,  4, 11,  29,  73, 101, 34, 1;
  .. 1,  4, 11, 29,  76, 171, 174, 43, 1;
  1, 4, 11, 29, 76, 196, 370, 281, 53, 1;
		

Crossrefs

This is a bisection of the "Lucas array" A027960, see A027011 for the other bisection.
Row sums give A095121.
Signed row sums give A090132.
Diagonal sums give A027010.
Right-edge columns include A034856, A027966, A027968, A027970, A027972.
Cf. A000032.

Programs

  • Magma
    function t(n, k) // t = A027960
          if k le n then return Lucas(k+1);
          elif k gt 2*n then return 0;
          else return t(n-1, k-2) + t(n-1, k-1);
          end if;
    end function;
    A026998:= func< n,k | t(n, 2*k) >;
    [A026998(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 09 2025
    
  • Mathematica
    f[n_, k_]:= f[n, k]= Sum[Binomial[2*n-k+j,j]*LucasL[2*(k-n-j)], {j,0,k-n-1}];
    A027960[n_, k_]:= LucasL[k+1] - f[n,k]*Boole[k>n];
    A026998[n_, k_]:= A027960[n,2*k];
    Table[A026998[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 09 2025 *)
  • SageMath
    @CachedFunction
    def t(n, k): # t = A027960
        if (k>2*n): return 0
        elif (kA026998(n,k): return t(n, 2*k)
    print(flatten([[A026998(n, k) for k in (0..n)] for n in (0..12)])) # G. C. Greubel, Jul 09 2025

Formula

T(n, k) = Lucas(2*n+1) = A002878(n) for 2*k <= n, otherwise the (2*n-2*k)-th coefficient of the power series for (1+2*x)/( (1-x-x^2)*(1-x)^(2*k-n) ).

Extensions

Edited by Ralf Stephan, May 05 2005

A027967 T(n, 2*n-5), T given by A027960.

Original entry on oeis.org

3, 7, 18, 44, 98, 199, 373, 654, 1085, 1719, 2620, 3864, 5540, 7751, 10615, 14266, 18855, 24551, 31542, 40036, 50262, 62471, 76937, 93958, 113857, 136983, 163712, 194448, 229624, 269703, 315179, 366578, 424459, 489415, 562074, 643100, 733194, 833095, 943581, 1065470, 1199621
Offset: 3

Views

Author

Keywords

Crossrefs

A column of triangle A027011.

Programs

  • GAP
    List([3..50], n-> (840-736*n+300*n^2-45*n^3+n^5)/120) G. C. Greubel, Jun 30 2019
  • Magma
    [(840-736*n+300*n^2-45*n^3+n^5)/120: n in [3..50]]; // G. C. Greubel, Jun 30 2019
    
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1}, {3,7,18,44,98,199}, 50] (* G. C. Greubel, Jun 30 2019 *)
  • PARI
    for(n=3,50, print1((840-736*n+300*n^2-45*n^3+n^5)/120, ", ")) \\ G. C. Greubel, Jun 30 2019
    
  • Sage
    [(840-736*n+300*n^2-45*n^3+n^5)/120 for n in (3..50)] # G. C. Greubel, Jun 30 2019
    

Formula

From Ralf Stephan, Feb 07 2004: (Start)
G.f.: x^3*(3-2*x)*(1-3*x+5*x^2-3*x^3+x^4)/(1-x)^6.
Differences of A027968. (End)
From G. C. Greubel, Jun 30 2019: (Start)
a(n) = (840 - 736*n + 300*n^2 - 45*n^3 + n^5)/120.
E.g.f.: (-120*(7 + 3*x + x^2) + (840 - 480*x + 180*x^2 - 20*x^3 + 10*x^4 + x^5)*exp(x))/120. (End)

Extensions

Terms a(37) onward added by G. C. Greubel, Jun 30 2019
Showing 1-3 of 3 results.