cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A027002 a(n) = T(2*n, n+3), T given by A026998.

Original entry on oeis.org

1, 43, 431, 2482, 10636, 38138, 122069, 362853, 1027843, 2822668, 7601784, 20228876, 53447609, 140633575, 369179479, 967898846, 2535852052, 6641420806, 17390705661, 45533644161, 119213967867, 312112955384, 817130734512, 2139286435768, 5600737350897
Offset: 3

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A027002 := func< n | Lucas(2*n+7) -(435+433*n+155*n^2+125*n^3-20*n^4+12*n^5)/15 >;
    [A027002(n): n in [3..50]]; // G. C. Greubel, Jun 16 2025
    
  • Maple
    gf:= x^3*(1+34*x+78*x^2-6*x^3-11*x^4) / ((1-x)^6*(1-3*x+x^2)):
    S:= series(gf,x,100):
    seq(coeff(S,x,n),n=3..100); # Robert Israel, Feb 18 2016
  • Mathematica
    LinearRecurrence[{9, -34, 71, -90, 71, -34, 9, -1}, {1, 43, 431, 2482, 10636, 38138, 122069, 362853}, 30] (* Vincenzo Librandi, Feb 19 2016 *)
  • PARI
    Vec(x^3*(1+34*x+78*x^2-6*x^3-11*x^4)/((1-x)^6*(1-3*x+x^2)) + O(x^40)) \\ Colin Barker, Feb 19 2016
    
  • SageMath
    def A027002(n): return lucas_number2(2*n+7,1,-1) -(435+433*n+155*n^2+125*n^3 -20*n^4+12*n^5)/15
    print([A027002(n) for n in range(3,51)]) # G. C. Greubel, Jun 16 2025

Formula

G.f.: x^3*(1+34*x+78*x^2-6*x^3-11*x^4) / ((1-x)^6*(1-3*x+x^2)). - Colin Barker, Feb 18 2016
From Robert Israel, Feb 18 2016: (Start)
By definition, a(n) is the coefficient of x^(2*n-6) in the Maclaurin series of (1+2*x)/((1-x-x^2)*(1-x)^6). This can be written explicitly:
a(n) = ((29-13*sqrt(5))/2)*((3-sqrt(5))/2)^n + ((29+13*sqrt(5))/2)*((3+sqrt(5))/2)^n - (4/5)*n^5 + (4/3)*n^4 - (25/3)*n^3 - (31/3)*n^2 - (433/15)*n - 29.
This confirms Colin Barker's g.f. (End)
From G. C. Greubel, Jun 16 2025: (Start)
a(n) = A000032(2*n+7) - (1/15)*(435 + 433*n + 155*n^2 + 125*n^3 - 20*n^4 + 12*n^5).
E.g.f.: exp(3*x/2)*(29*cosh(sqrt(5)*x/2) + 13*sqrt(5)*sinh(sqrt(5)*x/2)) - (1/15)*(435 + 705*x + 570*x^2 + 305*x^3 + 100*x^4 + 12*x^5)*exp(x). (End)

A027003 a(n) = A026998(2*n, n+4).

Original entry on oeis.org

1, 64, 901, 6821, 36425, 155793, 573382, 1899933, 5844446, 17056486, 47974934, 131553646, 354615679, 945220982, 2501450971, 6590435731, 17316698039, 45428211431, 119066290172, 311909267867, 816853717452, 2138914514428, 5600243896572, 14662288678348, 38387242941837
Offset: 4

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A027003:= func< n | Lucas(2*n+9) -(48*n^7 -280*n^6 +1596*n^5 -910*n^4 +10122*n^3 +20405*n^2 +46509*n +47880)/630 >;
    [A027003(n): n in [4..45]]; // G. C. Greubel, Jul 20 2025
    
  • Mathematica
    f[n_]:= (48*n^7 -280*n^6 +1596*n^5 -910*n^4 +10122*n^3 +20405*n^2 +46509*n+47880)/630;
    A027003[n_]:= LucasL[2*n+9] -f[n];
    Table[A027003[n], {n,4,50}] (* G. C. Greubel, Jul 20 2025 *)
  • SageMath
    def A027003(n): return lucas_number2(2*n+9,1,-1) -(48*n^7 -280*n^6 +1596*n^5 -910*n^4 +10122*n^3 +20405*n^2 +46509*n +47880)//630
    print([A027003(n) for n in range(4,46)]) # G. C. Greubel, Jul 20 2025

Formula

From G. C. Greubel, Jul 20 2025: (Start)
a(n) = Lucas(2*n+9) - f(n), where f(n) = (48*n^7 - 280*n^6 + 1596*n^5 - 910*n^4 + 10122*n^3 + 20405*n^2 + 46509*n + 47880)/630.
G.f.: x^4*(1 + 53*x + 250*x^2 + 154*x^3 - 59*x^4 - 15*x^5)/((1-x)^8*(1-3*x+x^2)).
E.g.f.: 4*exp(3*x/2)*(19*cosh(p*x) + 17*p*sinh(p*x)) - (1/630)*(47880 + 77490*x + 62685*x^2 + 33810*x^3 + 13650*x^4 + 4116*x^5 + 728*x^6 + 48*x^7)*exp(x), where 2*p = sqrt(5). (End)

Extensions

More terms from Sean A. Irvine, Oct 21 2019

A027007 a(n) = A026998(2n+1, n+4).

Original entry on oeis.org

1, 53, 634, 4201, 20120, 78753, 269829, 844702, 2486178, 7017354, 19260116, 51903794, 138254821, 365619439, 962704734, 2528441803, 6631057180, 17376467099, 45514392201, 119188310928, 312079208726, 817086876180, 2139230058328, 5600665608772, 14662845807193
Offset: 3

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A027007:= func< n | Lucas(2*n+9) - (1/30)*(8*n^6 - 4*n^5 + 110*n^4 + 325*n^3 + 1052*n^2 + 2199*n + 2280) >;
    [A027007(n): n in [3..45]]; // G. C. Greubel, Jul 23 2025
    
  • Mathematica
    Table[LucasL[2*n+9] -(1/30)*(8*n^6 -4*n^5 +110*n^4 +325*n^3 +1052*n^2 +2199*n +2280), {n,3,45}] (* G. C. Greubel, Jul 23 2025 *)
  • SageMath
    def A027007(n): return lucas_number2(2*n+9,1,-1) - (1/30)*(8*n^6 - 4*n^5 + 110*n^4 + 325*n^3 + 1052*n^2 + 2199*n + 2280)
    print([A027007(n) for n in range(3,46)]) # G. C. Greubel, Jul 23 2025

Formula

From G. C. Greubel, Jul 23 2025: (Start)
a(n) = Lucas(2*n+9) - (1/30)*(8*n^6 - 4*n^5 + 110*n^4 + 325*n^3 + 1052*n^2 + 2199*n + 2280).
G.f.: x^3*(1 + 43*x + 147*x^2 + 35*x^3 - 32*x^4 - 2*x^5)/((1-x)^7*(1-3*x+x^2)).
E.g.f.: 4*exp(3*x/2)*( 19*cosh(p*x) + 17*p*sinh(p*x) ) - (1/30)*(2280 + 3690*x + 2985*x^2 + 1605*x^3 + 590*x^4 + 116*x^5 + 8*x^6)*exp(x), where 2*p = sqrt(5). (End)

Extensions

More terms from Sean A. Irvine, Oct 21 2019

A027010 a(n) = Sum_{k=floor((n+1)/2)..n} T(k,n-k); i.e., a(n) is the n-th diagonal sum of left-justified array T given by A026998.

Original entry on oeis.org

1, 1, 2, 5, 6, 13, 17, 29, 43, 64, 100, 144, 223, 326, 492, 733, 1089, 1634, 2421, 3626, 5389, 8041, 11985, 17847, 26624, 39640, 59112, 88059, 131242, 195592, 291433, 434369, 647218, 964581, 1437374, 2142013, 3192113, 4756821
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:= PowerSeriesRing(Integers(), 40);
    Coefficients(R!( x*(1-x^2+2*x^3)/((1-x)*(1-2*x^2-x^3+x^4)) )); // G. C. Greubel, Jul 11 2025
    
  • Mathematica
    CoefficientList[Series[(1-x^2+2 x^3)/((1-x)(1-2 x^2 -x^3 +x^4)), {x,0,40}], x] (* Vincenzo Librandi, Aug 03 2017 *)
  • SageMath
    def A027010_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1-x^2+2*x^3)/((1-x)*(1-2*x^2-x^3+x^4)) ).list()
    a=A027010_list(40); a[1:] # G. C. Greubel, Jul 11 2025

Formula

G.f.: x*(1 - x^2 + 2*x^3)/((1-x)*(1-2*x^2-x^3+x^4)).
a(n) = 2*b(n+2) + 3*b(n+1) - b(n) - 4*b(n-1) - 2, where b(n) = A122514(n). - G. C. Greubel, Jul 11 2025

A026999 Uniquification of A026998.

Original entry on oeis.org

1, 4, 8, 11, 13, 19, 26, 29, 34, 43, 53, 54, 64, 73, 76, 89, 101, 103, 118, 134, 151, 169, 171, 174, 188, 196, 199, 208, 229, 251, 274, 281, 298, 323, 349, 370, 376, 404, 431, 433, 463, 487, 494, 518, 521, 526, 559, 593, 628, 634, 664, 701, 739, 743, 778, 818, 859, 901, 944, 988, 1033, 1079, 1126, 1148
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_, k_]:= f[n, k]= Sum[Binomial[2*n-k+j,j]*LucasL[2*(k-n-j)], {j,0,k-n-1}];
    A027960[n_, k_]:= LucasL[k+1] -f[n,k]*Boole[k>n];
    A026999= Table[A027960[n,2*k], {n,0,225}, {k,0,n}]//Flatten//Union;
    Table[A026999[[n]], {n,120}] (* G. C. Greubel, Aug 21 2025 *)
  • SageMath
    @CachedFunction
    def t(n, k): # t = A027960
        if (k>2*n): return 0
        elif (kA026998(n, k): return t(n, 2*k)
    A026999 = sorted(set( flatten([[A026998(n,k) for k in range(n+1)] for n in range(103)]) ))
    print([A026999[n] for n in range(100)]) # G. C. Greubel, Aug 21 2025

Extensions

More terms added by G. C. Greubel, Aug 21 2025

A027001 a(n) = T(2*n, n+2), T given by A026998.

Original entry on oeis.org

1, 26, 174, 743, 2552, 7784, 22193, 60882, 163430, 433495, 1142496, 3001056, 7869649, 20619098, 54001422, 141401879, 370224248, 969294632, 2537687585, 6643800690, 17393752166, 45537499111, 119218794624, 312118940928, 817138091617, 2139295405274
Offset: 2

Views

Author

Keywords

Crossrefs

Bisection of A027964.

Programs

  • Magma
    [3*Fibonacci(2*n+10)-2*Fibonacci(2*n+9)-Fibonacci(2*n+8)-4*n^3-26*n^2-68*n-75: n in [0..30]]; // Vincenzo Librandi, Feb 19 2016
    
  • Mathematica
    LinearRecurrence[{7, -19, 26, -19, 7, -1}, {1, 26, 174, 743, 2552, 7784}, 30] (* Vincenzo Librandi, Feb 19 2016 *)
  • PARI
    Vec(x^2*(1+x)*(1+18*x-7*x^2)/((1-x)^4*(1-3*x+x^2)) + O(x^40)) \\ Colin Barker, Feb 18 2016
    
  • SageMath
    def A027001(n): return lucas_number2(2*n+5,1,-1) -(4*(n+1)**3 -10*n**2 +7)
    print([A027001(n) for n in range(2,41)]) # G. C. Greubel, Jul 20 2025

Formula

a(n+2) = 3*F(2*n+10) - 2*F(2*n+9) - F(2*n+8) -(4*n^3 +26*n^2 +68*n +75), n >= 0, F(n) = A000045(n). - Ralf Stephan, Feb 07 2004
From Colin Barker, Feb 18 2016: (Start)
a(n) = 2^(-1-n)*( (11-5*sqrt(5))*(3-sqrt(5))^n + (11+5*sqrt(5))*(3+sqrt(5))^n ) - 11 - 12*n - 2*n^2 - 4*n^3.
G.f.: x^2*(1+x)*(1+18*x-7*x^2) / ((1-x)^4*(1-3*x+x^2)). (End)
From G. C. Greubel, Jul 20 2025: (Start)
a(n) = Lucas(2*n+5) - (4*(n+1)^3 - 10*n^2 + 7), n >= 2.
E.g.f.: exp(3*x/2)*(11*cosh(p*x) + 10*p*sinh(p*x)) - (4*x^3 + 14*x^2 + 18*x + 11)*exp(x), where 2*p = sqrt(5). (End)

A027004 a(n) = T(2*n+1,n+1), T given by A026998.

Original entry on oeis.org

1, 8, 26, 73, 196, 518, 1361, 3568, 9346, 24473, 64076, 167758, 439201, 1149848, 3010346, 7881193, 20633236, 54018518, 141422321, 370248448, 969323026, 2537720633, 6643838876, 17393795998, 45537549121, 119218851368, 312119004986, 817138163593, 2139295485796
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Fibonacci(2*n+3) + 2*Fibonacci(2*n+2) - 3: n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
    
  • Mathematica
    LucasL[2*Range[0,40] +3] -3 (* G. C. Greubel, Jul 21 2025 *)
  • PARI
    Vec((1+4*x-2*x^2)/((1-x)*(1-3*x+x^2)) + O(x^40)) \\ Colin Barker, Feb 18 2016
    
  • SageMath
    def A027004(n): return lucas_number2(2*n+3,1,-1) -3 # G. C. Greubel, Jul 21 2025

Formula

a(n) = Fibonacci(2*n+3) + 2*Fibonacci(2*n+2) - 3.
a(n) = A002878(n+1) - 3.
From Colin Barker, Feb 18 2016: (Start)
a(n) = 2^(-n)*((2-sqrt(5))*(3-sqrt(5))^n + (2+sqrt(5))*(3+sqrt(5))^n) - 3.
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3) for n > 2.
G.f.: (1+4*x-2*x^2) / ((1-x)*(1-3*x+x^2)). (End)
From G. C. Greubel, Jul 21 2025: (Start)
a(n) = Lucas(2*n+3) - 3.
E.g.f.: 2*exp(3*x/2)*(2*cosh(p*x) + p*sinh(p*x)) - 3*exp(x), where 2*p = sqrt(5). (End)

A027005 a(n) = T(2*n+1,n+2), T given by A026998.

Original entry on oeis.org

1, 19, 101, 370, 1148, 3278, 8967, 23993, 63483, 167040, 438346, 1148844, 3009181, 7879855, 20631713, 54016798, 141420392, 370246298, 969320643, 2537718005, 6643835991, 17393792844, 45537545686, 119218847640, 312119000953, 817138159243, 2139295481117
Offset: 1

Views

Author

Keywords

Comments

Bisection of A027963.

Crossrefs

Programs

  • Magma
    A027005:= func< n | Lucas(2*n+5) -(6*n^2+11*n+11) >;
    [A027005(n): n in [1..40]]; // G. C. Greubel, Jul 21 2025
    
  • Mathematica
    LinearRecurrence[{6,-13,13,-6,1},{1,19,101,370,1148},30] (* Harvey P. Dale, Aug 19 2020 *)
  • PARI
    Vec(x*(1+13*x-2*x^3)/((1-x)^3*(1-3*x+x^2)) + O(x^40)) \\ Colin Barker, Feb 19 2016
    
  • SageMath
    def A027005(n): return lucas_number2(2*n+5,1,-1) -(6*n**2 +11*n +11)
    print([A027005(n) for n in range(1,41)]) # G. C. Greubel, Jul 21 2025

Formula

From Colin Barker, Feb 19 2016: (Start)
a(n) = 2^(-1-n)*((25+11*sqrt(5))*(3+sqrt(5))^n - (25-11*sqrt(5))*(3-sqrt(5))^n )/sqrt(5) + 7*(1+n) - 6*(n+1)*(n+2) + 7*(n+1) - 6.
a(n) = 6*a(n-1) - 13*a(n-2) + 13*a(n-3) - 6*a(n-4) + a(n-5) for n>5.
G.f.: x*(1+13*x-2*x^3) / ((1-x)^3*(1-3*x+x^2)). (End)
From G. C. Greubel, Jul 21 2025: (Start)
a(n) = Lucas(2*n+5) - (6*n^2 + 11*n + 11).
E.g.f.: exp(3*x/2)*(11*cosh(p*x) + 10*p*sinh(p*x)) - (11 + 17*x + 6*x^2)*exp(x), where 2*p = sqrt(5). (End)

A027006 a(n) = T(2*n+1, n+3), T given by A026998.

Original entry on oeis.org

1, 34, 281, 1397, 5353, 17643, 53062, 150833, 414210, 1114160, 2960806, 7814074, 20544191, 53902532, 141273663, 370060623, 969088727, 2537431693, 6643486220, 17393369595, 45537037936, 119218243314, 312118286876, 817137321092, 2139294503373, 5600747154678
Offset: 2

Views

Author

Keywords

Comments

Bisection of A053298.

Crossrefs

Programs

  • Magma
    A027006:= func< n | Lucas(2*n+7) -(12*n^4 +20*n^3 +81*n^2 +169*n +174)/6 >;
    [A027006(n): n in [2..40]]; // G. C. Greubel, Jul 22 2025
    
  • Mathematica
    A027006[n_]:= LucasL[2*n+7] -(12*n^4 +20*n^3 +81*n^2 +169*n +174)/6;
    Table[A027006[n], {n,2,42}] (* G. C. Greubel, Jul 22 2025 *)
  • PARI
    Vec(x^2*(1+26*x+35*x^2-12*x^3-2*x^4) / ((1-x)^5*(1-3*x+x^2)) + O(x^40)) \\ Colin Barker, Feb 19 2016
    
  • SageMath
    def A027006(n): return lucas_number2(2*n+7,1,-1) -(12*n^4 +20*n^3 +81*n^2 +169*n +174)//6
    print([A027006(n) for n in range(2,41)]) # G. C. Greubel, Jul 22 2025

Formula

G.f.: x^2*(1+26*x+35*x^2-12*x^3-2*x^4) / ((1-x)^5*(1-3*x+x^2)). - Colin Barker, Feb 19 2016
From G. C. Greubel, Jul 22 2025: (Start)
a(n) = Lucas(2*n+7) - (12*n^4 + 20*n^3 + 81*n^2 + 169*n + 174)/6.
E.g.f.: exp(3*x/2)*(29*cosh(p*x) + 26*p*sinh(p*x)) - (1/6)*(174 + 282*x + 225*x^2 + 92*x^3 + 12*x^4)*exp(x), where 2*p = sqrt(5). (End)

A027008 a(n) = greatest number in row n of array T given by A026998.

Original entry on oeis.org

1, 1, 4, 8, 13, 26, 54, 101, 174, 370, 743, 1397, 2552, 5353, 10636, 20120, 38138, 78753, 155793, 296248, 573382, 1173183, 2316317, 4423690, 8673078, 17641499, 34801731, 66705394, 131894869, 267203186, 526966454, 1013155981
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026998.

Programs

  • Mathematica
    f[n_, k_]:= f[n, k]= Sum[Binomial[2*n-k+j,j]*LucasL[2*(k-n-j)], {j,0,k-n-1}];
    A027960[n_, k_]:= LucasL[k+1] -f[n,k]*Boole[k>n];
    b[n_]:= b[n]= Table[A027960[n,2*k], {k,0,n}];
    A027008[n_]:= Max[b[n]];
    Table[A027008[n], {n,0,50}] (* G. C. Greubel, Jul 24 2025 *)
  • SageMath
    @CachedFunction
    def t(n, k): # t = A027960
        if (k>2*n): return 0
        elif (kA026998(n, k): return t(n, 2*k)
    def b(n): return flatten([A026998(n,k) for k in range(n+1)])
    def A027008(n): return max(b(n))
    print([A027008(n) for n in range(51)]) # G. C. Greubel, Jul 24 2025

Extensions

Offset changed by G. C. Greubel, Jul 24 2025
Showing 1-10 of 19 results. Next