cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 34 results. Next

A026998 Triangular array T read by rows: T(n, k) = t(n, 2k), t given by A027960, 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 4, 8, 1, 1, 4, 11, 13, 1, 1, 4, 11, 26, 19, 1, 1, 4, 11, 29, 54, 26, 1, 1, 4, 11, 29, 73, 101, 34, 1, 1, 4, 11, 29, 76, 171, 174, 43, 1, 1, 4, 11, 29, 76, 196, 370, 281, 53, 1, 1, 4, 11, 29, 76, 199, 487, 743, 431, 64, 1
Offset: 0

Views

Author

Keywords

Comments

Right-edge columns are polynomials approximating Lucas(2n+1).

Examples

			  .................................... 1;
  ................................. 1, 1;
  ............................. 1,  4, 1;
  ........................ 1,   4,  8, 1;
  ................... 1,   4,  11, 13, 1;
  .............. 1,   4,  11,  26, 19, 1;
  .......... 1,  4,  11,  29,  54, 26, 1;
  ...... 1,  4, 11,  29,  73, 101, 34, 1;
  .. 1,  4, 11, 29,  76, 171, 174, 43, 1;
  1, 4, 11, 29, 76, 196, 370, 281, 53, 1;
		

Crossrefs

This is a bisection of the "Lucas array" A027960, see A027011 for the other bisection.
Row sums give A095121.
Signed row sums give A090132.
Diagonal sums give A027010.
Right-edge columns include A034856, A027966, A027968, A027970, A027972.
Cf. A000032.

Programs

  • Magma
    function t(n, k) // t = A027960
          if k le n then return Lucas(k+1);
          elif k gt 2*n then return 0;
          else return t(n-1, k-2) + t(n-1, k-1);
          end if;
    end function;
    A026998:= func< n,k | t(n, 2*k) >;
    [A026998(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 09 2025
    
  • Mathematica
    f[n_, k_]:= f[n, k]= Sum[Binomial[2*n-k+j,j]*LucasL[2*(k-n-j)], {j,0,k-n-1}];
    A027960[n_, k_]:= LucasL[k+1] - f[n,k]*Boole[k>n];
    A026998[n_, k_]:= A027960[n,2*k];
    Table[A026998[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 09 2025 *)
  • SageMath
    @CachedFunction
    def t(n, k): # t = A027960
        if (k>2*n): return 0
        elif (kA026998(n,k): return t(n, 2*k)
    print(flatten([[A026998(n, k) for k in (0..n)] for n in (0..12)])) # G. C. Greubel, Jul 09 2025

Formula

T(n, k) = Lucas(2*n+1) = A002878(n) for 2*k <= n, otherwise the (2*n-2*k)-th coefficient of the power series for (1+2*x)/( (1-x-x^2)*(1-x)^(2*k-n) ).

Extensions

Edited by Ralf Stephan, May 05 2005

A027011 Triangular array T read by rows: T(n,k) = t(n, 2k+1) for 0 <= k <= floor((2n-1)/2), t given by A027960, n >= 0.

Original entry on oeis.org

3, 3, 4, 3, 7, 5, 3, 7, 15, 6, 3, 7, 18, 28, 7, 3, 7, 18, 44, 47, 8, 3, 7, 18, 47, 98, 73, 9, 3, 7, 18, 47, 120, 199, 107, 10, 3, 7, 18, 47, 123, 291, 373, 150, 11, 3, 7, 18, 47, 123, 319, 661, 654, 203, 12, 3, 7, 18, 47, 123, 322, 806, 1404, 1085, 267, 13, 3, 7, 18, 47
Offset: 1

Views

Author

Keywords

Comments

Right-edge columns are polynomials approximating Lucas(2n).

Examples

			                                          3
                                     3,   4
                                3,   7,   5
                           3,   7,  15,   6
                      3,   7,  18,  28,   7
                 3,   7,  18,  44,  47,   8
            3,   7,  18,  47,  98,  73,   9
       3,   7,  18,  47, 120, 199, 107,  10
  3,   7,  18,  47, 123, 291, 373, 150,  11
		

Crossrefs

This is a bisection of the "Lucas array " A027960, see A026998 for the other bisection.
Right-edge columns include A027965, A027967, A027969, A027971.
An earlier version of this entry had (unjustifiably) each row starting with 1.

Programs

  • Maple
    t:=proc(n,k)option remember:if(k=0 or k=2*n)then return 1:elif(k=1)then return 3:else return t(n-1,k-2) + t(n-1,k-1):fi:end:
    T:=proc(n,k)return t(n,2*k+1):end:
    for n from 0 to 8 do for k from 0 to floor((2*n-1)/2) do print(T(n,k));od:od: # Nathaniel Johnston, Apr 18 2011
  • Mathematica
    t[n_, k_] := t[n, k] = If[k == 0 || k == 2*n, 1, If[k == 1, 3, t[n-1, k-2] + t[n-1, k-1]]]; T[n_, k_] := t[n, 2*k+1]; Table[T[n, k], {n, 1, 12}, {k, 0, (2*n-1)/2}] // Flatten (* Jean-François Alcover, Nov 18 2013, after Nathaniel Johnston *)

Formula

T(n, k) = Lucas(2n) = A005248(n) for 2k+1 <= n, otherwise the (2n-2k+1)-th coefficient of the power series for (1+2x)/((1-x-x^2)(1-x)^(2k-n+1)).

Extensions

Edited by Ralf Stephan, May 05 2005

A027973 a(n) = T(n,n) + T(n,n+1) + ... + T(n,2n), T given by A027960.

Original entry on oeis.org

1, 4, 9, 21, 46, 99, 209, 436, 901, 1849, 3774, 7671, 15541, 31404, 63329, 127501, 256366, 514939, 1033449, 2072676, 4154701, 8324529, 16673534, 33386671, 66837421, 133778524, 267724809, 535721061, 1071881326, 2144473299, 4290096449, 8582053396, 17167117141
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..40], n-> 2^(n+2) - Lucas(1,-1,n+2)[2]); # G. C. Greubel, Sep 26 2019
  • Magma
    [2^n-Lucas(n): n in [2..40]]; // Vincenzo Librandi, May 05 2017
    
  • Maple
    with(combinat): a[0]:=1: for n from 1 to 30 do a[n]:=2*a[n-1]+fibonacci(n+1)-fibonacci(n-3) od: seq(a[n],n=0..30); # Emeric Deutsch, Nov 29 2006
  • Mathematica
    Table[2^n - LucasL[n], {n, 2, 50}] (* Vincenzo Librandi, May 05 2017 *)
  • PARI
    vector(40, n, f=fibonacci; 2^(n+1) - f(n+2) - f(n) ) \\ G. C. Greubel, Sep 26 2019
    
  • Sage
    [2^(n+2) - lucas_number2(n+2,1,-1) for n in (0..40)] # G. C. Greubel, Sep 26 2019
    

Formula

With a different offset: recurrence: a(-1)=a(0)=1 a(n+2) = a(n+1) + a(n) + 2^n; formula: a(n-2) = floor(2^n - phi^n) - (1-(-1)^n)/2. - Benoit Cloitre, Sep 02 2002
a(n) = A101220(4, 2, n+1) - A101220(4, 2, n). - Ross La Haye, Aug 05 2005
a(n) = 2*a(n-1) + Fibonacci(n+1) - Fibonacci(n-3) for n>=1; a(0)=1. - Emeric Deutsch, Nov 29 2006
O.g.f.: 4/(1-2*x) - (x+3)/(1-x-x^2). - R. J. Mathar, Nov 23 2007
a(n) = 2^(n+2) + F(n) - F(n+4) with F(n)=A000045(n). - Johannes W. Meijer, Aug 15 2010
Eigensequence of an infinite lower triangular matrix with the Lucas series (1, 3, 4, 7, ...) as the left border and the rest ones. - Gary W. Adamson, Jan 30 2012
a(n) = 2^(n+2) - Lucas(n+2). - Vincenzo Librandi, May 05 2017, corrected by Greg Dresden, Sep 13 2021

A027974 a(n) = Sum_{k=1..n+1} A027960(n+1, n+1+k).

Original entry on oeis.org

1, 5, 14, 35, 81, 180, 389, 825, 1726, 3575, 7349, 15020, 30561, 61965, 125294, 252795, 509161, 1024100, 2057549, 4130225, 8284926, 16609455, 33282989, 66669660, 133507081, 267285605, 535010414, 1070731475, 2142612801, 4287086100, 8577182549, 17159235945
Offset: 0

Views

Author

Keywords

Comments

The former name, a(n) = Sum_{i=0..n} Sum_{j=0..i} T(i,j), T given by A027960, was in error with the data given. [This double summation gives A023537(n+1), or A027960(n+2, n+4) for n >= 0]. - G. C. Greubel, Jun 08 2025

Crossrefs

Programs

  • GAP
    List([0..30], n-> 2^(n+3) - Lucas(1,-1,n+4)[2]); # G. C. Greubel, Sep 26 2019
  • Magma
    [2^(n+3) - Lucas(n+4): n in [0..30]]; // G. C. Greubel, Sep 26 2019
    
  • Maple
    with(combinat); f:=fibonacci; seq(2^(n+3) - f(n+5) - f(n+3), n=0..30); # G. C. Greubel, Sep 26 2019
  • Mathematica
    Table[2^(n+3) - LucasL[n+4], {n,0,30}] (* G. C. Greubel, Sep 26 2019 *)
  • PARI
    vector(31, n, f=fibonacci; 2^(n+2) - f(n+4) - f(n+2)) \\ G. C. Greubel, Sep 26 2019
    
  • SageMath
    def A027974(n): return 2**(n+3) - lucas_number2(n+4,1,-1)
    [A027974(n) for n in range(31)] # G. C. Greubel, Sep 26 2019; Jun 08 2025
    

Formula

a(n) = 2^(n+3) - Fibonacci(n+5) - Fibonacci(n+3).
a(n) = A101220(4, 2, n+1).
G.f.: (1+2*x)/((1-2*x)*(1-x-x^2)). - R. J. Mathar, Sep 22 2008
a(n) = 2*a(n-1) + A000032(n+1). - David A. Corneth, Apr 16 2015
a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3). - Colin Barker, Feb 17 2016
From G. C. Greubel, Jun 08 2025: (Start)
a(n) = 2^(n+3) - A000032(n+4).
E.g.f.: 8*exp(2*x) - exp(x/2)*( 7*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2) ). (End)

A027964 T(n,n+4), T given by A027960.

Original entry on oeis.org

1, 7, 26, 73, 174, 373, 743, 1404, 2552, 4506, 7784, 13226, 22193, 36889, 60882, 99947, 163430, 266455, 433495, 704150, 1142496, 1852212, 3001056, 4860468, 7869649, 12739243, 20619098, 33369709, 54001422, 87385081
Offset: 4

Views

Author

Keywords

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^4*(1+2*x)/((1-x)^4*(1-x-x^2)) )); // G. C. Greubel, Jun 29 2019
    
  • Mathematica
    Drop[CoefficientList[Series[x^4*(1+2*x)/((1-x)^4*(1-x-x^2)), {x,0,40}], x], 4] (* G. C. Greubel, Jun 29 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec(x^4*(1+2*x)/((1-x)^4*(1-x-x^2))) \\ G. C. Greubel, Jun 29 2019
    
  • Sage
    a=(x^4*(1+2*x)/((1-x)^4*(1-x-x^2))).series(x, 40).coefficients(x, sparse=False); a[4:] # G. C. Greubel, Jun 29 2019

Formula

G.f.: x^4*(1+2*x)/((1-x)^4*(1-x-x^2)). - Ralf Stephan, Feb 07 2004

A027963 T(n,n+3), T given by A027960.

Original entry on oeis.org

1, 6, 19, 47, 101, 199, 370, 661, 1148, 1954, 3278, 5442, 8967, 14696, 23993, 39065, 63483, 103025, 167040, 270655, 438346, 709716, 1148844, 1859412, 3009181, 4869594, 7879855, 12750611, 20631713, 33383659, 54016798, 87401977, 141420392, 228824086, 370246298, 599072310, 969320643
Offset: 3

Views

Author

Keywords

Crossrefs

Cf. A000032.

Programs

  • GAP
    List([3..40], n-> Lucas(1,-1,n+4)[2] - (3*n^2+5*n+14)/2 ) # G. C. Greubel, Jun 01 2019
  • Magma
    [Lucas(n+4) -(3*n^2+5*n+14)/2: n in [3..40]]; // G. C. Greubel, Jun 01 2019
    
  • Mathematica
    t[, 0] = 1; t[, 1] = 3; t[n_, k_] /; (k == 2*n) = 1; t[n_, k_] := t[n, k] = t[n-1, k-2] + t[n-1, k-1]; Table[t[n, n+3], {n, 3, 33}]  (* Jean-François Alcover, Dec 27 2013 *)
    Table[LucasL[n+4] -(3*n^2+5*n+14)/2, {n,3,40}] (* G. C. Greubel, Jun 01 2019 *)
  • PARI
    {a(n) = fibonacci(n+5) + fibonacci(n+3) - (3*n^2+5*n+14)/2}; \\ G. C. Greubel, Jun 01 2019
    
  • Sage
    [lucas_number2(n+4,1,-1) - (3*n^2+5*n+14)/2 for n in (3..40)] # G. C. Greubel, Jun 01 2019
    

Formula

G.f.: x^3*(1+2*x)/((1-x)^3*(1-x-x^2)). Differences of A027964. - Ralf Stephan, Feb 07 2004
a(n) = Lucas(n+4) - (3*n^2 + 5*n + 14)/2.

Extensions

Terms a(34) onward added by G. C. Greubel, Jun 01 2019

A027965 T(n, 2*n-3), T given by A027960.

Original entry on oeis.org

3, 7, 15, 28, 47, 73, 107, 150, 203, 267, 343, 432, 535, 653, 787, 938, 1107, 1295, 1503, 1732, 1983, 2257, 2555, 2878, 3227, 3603, 4007, 4440, 4903, 5397, 5923, 6482, 7075, 7703, 8367, 9068, 9807, 10585, 11403, 12262, 13163, 14107, 15095, 16128, 17207, 18333, 19507, 20730, 22003
Offset: 2

Views

Author

Keywords

Crossrefs

A column of triangle A027011.

Programs

  • GAP
    List([2..50], n-> (18-10*n+3*n^2+n^3)/6) # G. C. Greubel, Jun 30 2019
  • Magma
    [(18-10*n+3*n^2+n^3)/6: n in [2..50]]; // G. C. Greubel, Jun 30 2019
    
  • Mathematica
    LinearRecurrence[{4,-6,4,-1}, {3,7,15,28}, 50] (* G. C. Greubel, Jun 30 2019 *)
  • PARI
    vector(50, n, n++; (18-10*n+3*n^2+n^3)/6) \\ G. C. Greubel, Jun 30 2019
    
  • Sage
    [(18-10*n+3*n^2+n^3)/6 for n in (2..50)] # G. C. Greubel, Jun 30 2019
    

Formula

a(n+2) = A074742(n-1) = A008778(n) + 2 = A000297(n-1) + 3.
From Ralf Stephan, Feb 07 2004: (Start)
G.f.: x^2*(3 - 2*x)*(1 - x + x^2)/(1-x)^4.
Differences of A027966. (End)
From G. C. Greubel, Jun 30 2019: (Start)
a(n) = (18 - 10*n + 3*n^2 + n^3)/6.
E.g.f.: (-18 - 12*x + (18 - 6*x + 6*x^2 + x^3)*exp(x))/6. (End)

Extensions

Terms a(32) onward added by G. C. Greubel, Jun 30 2019

A027966 T(n, 2*n-4), T given by A027960.

Original entry on oeis.org

1, 4, 11, 26, 54, 101, 174, 281, 431, 634, 901, 1244, 1676, 2211, 2864, 3651, 4589, 5696, 6991, 8494, 10226, 12209, 14466, 17021, 19899, 23126, 26729, 30736, 35176, 40079, 45476, 51399, 57881, 64956, 72659, 81026, 90094, 99901, 110486, 121889, 134151, 147314, 161421, 176516, 192644
Offset: 2

Views

Author

Keywords

Crossrefs

A column of triangle A026998.

Programs

  • GAP
    List([2..50], n-> (n^4+2*n^3-25*n^2+94*n-96)/24); # G. C. Greubel, Jun 30 2019
  • Magma
    [(n^4+2*n^3-25*n^2+94*n-96)/24: n in [2..50]]; // G. C. Greubel, Jun 30 2019
    
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1}, {1,4,11,26,54}, 50] (* G. C. Greubel, Jun 30 2019 *)
  • PARI
    vector(50, n, n++; (n^4+2*n^3-25*n^2+94*n-96)/24) \\ G. C. Greubel, Jun 30 2019
    
  • Sage
    [(n^4+2*n^3-25*n^2+94*n-96)/24 for n in (2..50)] # G. C. Greubel, Jun 30 2019
    

Formula

From Ralf Stephan, Feb 07 2004: (Start)
G.f.: x^2*(1 - x + x^2 + x^3 - x^4)/(1-x)^5.
Differences of A027967. (End)
From G. C. Greubel, Jun 30 2019: (Start)
a(n) = (n^4 + 2*n^3 - 25*n^2 + 94*n - 96)/24.
E.g.f.: (96 +24*x - (96 - 72*x + 12*x^2 - 8*x^3 - x^4)*exp(x))/24. (End)

Extensions

Terms a(31) onward added by G. C. Greubel, Jun 30 2019

A027967 T(n, 2*n-5), T given by A027960.

Original entry on oeis.org

3, 7, 18, 44, 98, 199, 373, 654, 1085, 1719, 2620, 3864, 5540, 7751, 10615, 14266, 18855, 24551, 31542, 40036, 50262, 62471, 76937, 93958, 113857, 136983, 163712, 194448, 229624, 269703, 315179, 366578, 424459, 489415, 562074, 643100, 733194, 833095, 943581, 1065470, 1199621
Offset: 3

Views

Author

Keywords

Crossrefs

A column of triangle A027011.

Programs

  • GAP
    List([3..50], n-> (840-736*n+300*n^2-45*n^3+n^5)/120) G. C. Greubel, Jun 30 2019
  • Magma
    [(840-736*n+300*n^2-45*n^3+n^5)/120: n in [3..50]]; // G. C. Greubel, Jun 30 2019
    
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1}, {3,7,18,44,98,199}, 50] (* G. C. Greubel, Jun 30 2019 *)
  • PARI
    for(n=3,50, print1((840-736*n+300*n^2-45*n^3+n^5)/120, ", ")) \\ G. C. Greubel, Jun 30 2019
    
  • Sage
    [(840-736*n+300*n^2-45*n^3+n^5)/120 for n in (3..50)] # G. C. Greubel, Jun 30 2019
    

Formula

From Ralf Stephan, Feb 07 2004: (Start)
G.f.: x^3*(3-2*x)*(1-3*x+5*x^2-3*x^3+x^4)/(1-x)^6.
Differences of A027968. (End)
From G. C. Greubel, Jun 30 2019: (Start)
a(n) = (840 - 736*n + 300*n^2 - 45*n^3 + n^5)/120.
E.g.f.: (-120*(7 + 3*x + x^2) + (840 - 480*x + 180*x^2 - 20*x^3 + 10*x^4 + x^5)*exp(x))/120. (End)

Extensions

Terms a(37) onward added by G. C. Greubel, Jun 30 2019

A027968 a(n) = T(n, 2*n-6), T given by A027960.

Original entry on oeis.org

1, 4, 11, 29, 73, 171, 370, 743, 1397, 2482, 4201, 6821, 10685, 16225, 23976, 34591, 48857, 67712, 92263, 123805, 163841, 214103, 276574, 353511, 447469, 561326, 698309, 862021, 1056469, 1286093, 1555796, 1870975, 2237553
Offset: 3

Views

Author

Keywords

Crossrefs

A column of triangle A026998.

Programs

  • GAP
    List([3..40], n-> (-7920 +7548*n -3176*n^2 +735*n^3 -65*n^4 -3*n^5 +n^6)/720) # G. C. Greubel, Jul 01 2019
  • Magma
    [(-7920 +7548*n -3176*n^2 +735*n^3 -65*n^4 -3*n^5 +n^6)/720: n in [3..40]]; // G. C. Greubel, Jul 01 2019
    
  • Mathematica
    Table[(-7920 +7548*n -3176*n^2 +735*n^3 -65*n^4 -3*n^5 +n^6)/720, {n,3,40}] (* G. C. Greubel, Jul 01 2019 *)
  • PARI
    for(n=3,40, print1((-7920 +7548*n -3176*n^2 +735*n^3 -65*n^4 -3*n^5 +n^6)/720, ", ")) \\ G. C. Greubel, Jul 01 2019
    
  • Sage
    [(-7920 +7548*n -3176*n^2 +735*n^3 -65*n^4 -3*n^5 +n^6)/720 for n in (3..40)] # G. C. Greubel, Jul 01 2019
    

Formula

From Ralf Stephan, Feb 07 2004: (Start)
G.f.: x^3*(1 -3*x +4*x^2 +x^3 -4*x^4 +3*x^5 -x^6)/(1-x)^7.
a(n) = A027969(n+1) - A027969(n). (End)
From G. C. Greubel, Jul 01 2019: (Start)
a(n) = (-7920 +7548*n -3176*n^2 +735*n^3 -65*n^4 -3*n^5 +n^6)/720.
E.g.f.: (7920 +2880*x +360*x^2 -(7920 -5040*x +1440*x^2 -360*x^3 +30*x^4 -12*x^5 -x^6)*exp(x))/6!. (End)
Showing 1-10 of 34 results. Next