cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A101220 a(n) = Sum_{k=0..n} Fibonacci(n-k)*n^k.

Original entry on oeis.org

0, 1, 3, 14, 91, 820, 9650, 140601, 2440317, 49109632, 1123595495, 28792920872, 816742025772, 25402428294801, 859492240650847, 31427791175659690, 1234928473553777403, 51893300561135516404, 2322083099525697299278
Offset: 0

Views

Author

Ross La Haye, Dec 14 2004

Keywords

Comments

In what follows a(i,j,k) denotes a three-dimensional array, the terms a(n) are defined as a(n,n,n) in that array. - Joerg Arndt, Jan 03 2021
Previous name was: Three-dimensional array: a(i,j,k) = expansion of x*(1 + (i-j)*x)/((1-j*x)*(1-x-x^2)), read by a(n,n,n).
a(i,j,k) = the k-th value of the convolution of the Fibonacci numbers (A000045) with the powers of i = Sum_{m=0..k} a(i-1,j,m), both for i = j and i > 0; a(i,j,k) = a(i-1,j,k) + a(j,j,k-1), for i,k > 0; a(i,1,k) = Sum_{m=0..k} a(i-1,0,m), for i > 0. With F = Fibonacci and L = Lucas, then a(1,1,k) = F(k+2) - 1; a(2,1,k) = F(k+3) - 2; a(3,1,k) = L(k+2) - 3; a(4,1,k) = 4*F(k+1) + F(k) - 4; a(1,2,k) = 2^k - F(k+1); a(2,2,k) = 2^(k+1) - F(k+3); a(3,2,k) = 3(2^k - F(k+2)) + F(k); a(4,2,k) = 2^(k+2) - F(k+4) - F(k+2); a(1,3,k) = (3^k + L(k-1))/5, for k > 0; a(2,3,k) = (2 * 3^k - L(k)) /5, for k > 0; a(3,3,k) = (3^(k+1) - L(k+2))/5; a(4,3,k) = (4 * 3^k - L(k+2) - L(k+1))/5, etc..

Examples

			a(1,3,3) = 6 because a(1,3,0) = 0, a(1,3,1) = 1, a(1,3,2) = 2 and 4*2 - 2*1 - 3*0 = 6.
		

Crossrefs

a(0, j, k) = A000045(k).
a(1, 2, k+1) - a(1, 2, k) = A099036(k).
a(3, 2, k+1) - a(3, 2, k) = A104004(k).
a(4, 2, k+1) - a(4, 2, k) = A027973(k).
a(1, 3, k+1) - a(1, 3, k) = A099159(k).
a(i, 0, k) = A109754(i, k).
a(i, i+1, 3) = A002522(i+1).
a(i, i+1, 4) = A071568(i+1).
a(2^i-2, 0, k+1) = A118654(i, k), for i > 0.
Sequences of the form a(n, 0, k): A000045(k+1) (n=1), A000032(k) (n=2), A000285(k-1) (n=3), A022095(k-1) (n=4), A022096(k-1) (n=5), A022097(k-1) (n=6), A022098(k-1) (n=7), A022099(k-1) (n=8), A022100(k-1) (n=9), A022101(k-1) (n=10), A022102(k-1) (n=11), A022103(k-1) (n=12), A022104(k-1) (n=13), A022105(k-1) (n=14), A022106(k-1) (n=15), A022107(k-1) (n=16), A022108(k-1) (n=17), A022109(k-1) (n=18), A022110(k-1) (n=19), A088209(k-2) (n=k-2), A007502(k) (n=k-1), A094588(k) (n=k).
Sequences of the form a(1, n, k): A000071(k+2) (n=1), A027934(k-1) (n=2), A098703(k) (n=3).
Sequences of the form a(2, n, k): A001911(k) (n=1), A008466(k+1) (n=2), A106517(k-1) (n=3).
Sequences of the form a(3, n, k): A027961(k) (n=1), A094688(k) (n=3).
Sequences of the form a(4, n, k): A053311(k-1) (n=1), A027974(k-1) (n=2).

Programs

  • Magma
    A101220:= func< n | (&+[n^k*Fibonacci(n-k): k in [0..n]]) >;
    [A101220(n): n in [0..30]]; // G. C. Greubel, Jun 01 2025
    
  • Mathematica
    Join[{0}, Table[Sum[Fibonacci[n-k]*n^k, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Jan 03 2021 *)
  • PARI
    a(n)=sum(k=0,n,fibonacci(n-k)*n^k) \\ Joerg Arndt, Jan 03 2021
    
  • SageMath
    def A101220(n): return sum(n^k*fibonacci(n-k) for k in range(n+1))
    print([A101220(n) for n in range(31)]) # G. C. Greubel, Jun 01 2025

Formula

a(i, j, 0) = 0, a(i, j, 1) = 1, a(i, j, 2) = i+1; a(i, j, k) = ((j+1)*a(i, j, k-1)) - ((j-1)*a(i, j, k-2)) - (j*a(i, j, k-3)), for k > 2.
a(i, j, k) = Fibonacci(k) + i*a(j, j, k-1), for i, k > 0.
a(i, j, k) = (Phi^k - (-Phi)^-k + i(((j^k - Phi^k) / (j - Phi)) - ((j^k - (-Phi)^-k) / (j - (-Phi)^-1)))) / sqrt(5), where Phi denotes the golden mean/ratio (A001622).
i^k = a(i-1, i, k) + a(i-2, i, k+1).
A104161(k) = Sum_{m=0..k} a(k-m, 0, m).
a(i, j, 0) = 0, a(i, j, 1) = 1, a(i, j, 2) = i+1, a(i, j, 3) = i*(j+1) + 2; a(i, j, k) = (j+2)*a(i, j, k-1) - 2*j*a(i, j, k-2) - a(i, j, k-3) + j*a(i, j, k-4), for k > 3. a(i, j, 0) = 0, a(i, j, 1) = 1; a(i, j, k) = a(i, j, k-1) + a(i, j, k-2) + i * j^(k-2), for k > 1.
G.f.: x*(1 + (i-j)*x)/((1-j*x)*(1-x-x^2)).
a(n, n, n) = Sum_{k=0..n} Fibonacci(n-k) * n^k. - Ross La Haye, Jan 14 2006
Sum_{m=0..k} binomial(k,m)*(i-1)^m = a(i-1,i,k) + a(i-2,i,k+1), for i > 1. - Ross La Haye, May 29 2006
From Ross La Haye, Jun 03 2006: (Start)
a(3, 3, k+1) - a(3, 3, k) = A106517(k).
a(1, 1, k) = A001924(k) - A001924(k-1), for k > 0.
a(2, 1, k) = A001891(k) - A001891(k-1), for k > 0.
a(3, 1, k) = A023537(k) - A023537(k-1), for k > 0.
Sum_{j=0..i+1} a(i-j+1, 0, j) - Sum_{j=0..i} a(i-j, 0, j) = A001595(i). (End)
a(i,j,k) = a(j,j,k) + (i-j)*a(j,j,k-1), for k > 0.
a(n) ~ n^(n-1). - Vaclav Kotesovec, Jan 03 2021

Extensions

New name from Joerg Arndt, Jan 03 2021

A027960 'Lucas array': triangular array T read by rows.

Original entry on oeis.org

1, 1, 3, 1, 1, 3, 4, 4, 1, 1, 3, 4, 7, 8, 5, 1, 1, 3, 4, 7, 11, 15, 13, 6, 1, 1, 3, 4, 7, 11, 18, 26, 28, 19, 7, 1, 1, 3, 4, 7, 11, 18, 29, 44, 54, 47, 26, 8, 1, 1, 3, 4, 7, 11, 18, 29, 47, 73, 98, 101, 73, 34, 9, 1, 1, 3, 4, 7, 11, 18, 29, 47, 76, 120, 171, 199, 174, 107, 43, 10, 1
Offset: 0

Views

Author

Keywords

Comments

The k-th row contains 2k+1 numbers.
Columns in the right half consist of convolutions of the Lucas numbers with the natural numbers.
T(n,k) = number of strings s(0),...,s(n) such that s(n)=n-k. s(0) in {0,1,2}, s(1)=1 if s(0) in {1,2}, s(1) in {0,1,2} if s(0)=0 and for 1 <= i <= n, s(i) = s(i-1)+d, with d in {0,2} if s(i)=2i, in {0,1,2} if s(i)=2i-1, in {0,1} if 0 <= s(i) <= 2i-2.

Examples

			                           1
                       1,  3,  1
                   1,  3,  4,  4,  1
               1,  3,  4,  7,  8,  5,   1
           1,  3,  4,  7, 11, 15, 13,   6,  1
        1, 3,  4,  7, 11, 18, 26, 28,  19,  7,  1
     1, 3, 4,  7, 11, 18, 29, 44, 54,  47, 26,  8, 1
  1, 3, 4, 7, 11, 18, 29, 47, 73, 98, 101, 73, 34, 9, 1
		

Crossrefs

Central column is the Lucas numbers without initial 2: A000204.
Columns in the right half include A027961, A027962, A027963, A027964, A053298.
Bisection triangles are in A026998 and A027011.
Row sums: A036563, A153881 (alternating sign).
Diagonals of the form T(n, 2*n-p): A000012 (p=0), A000027 (p=1), A034856 (p=2), A027965 (p=3), A027966 (p=4), A027967 (p=5), A027968 (p=6), A027969 (p=7), A027970 (p=8), A027971 (p=9), A027972 (p=10).
Diagonals of the form T(n, n+p): A000032 (p=0), A027961 (p=1), A023537 (p=2), A027963 (p=3), A027964 (p=4), A053298 (p=5), A027002 U A027018 (p=6), A027007 U A027014 (p=7), A027003 U A027019 (p=8).

Programs

  • Magma
    function T(n,k) // T = A027960
          if k le n then return Lucas(k+1);
          elif k gt 2*n then return 0;
          else return T(n-1, k-2) + T(n-1, k-1);
          end if;
    end function;
    [T(n,k): k in [0..2*n], n in [0..12]]; // G. C. Greubel, Jun 08 2025
  • Maple
    T:=proc(n,k)option remember:if(k=0 or k=2*n)then return 1:elif(k=1)then return 3:else return T(n-1,k-2) + T(n-1,k-1):fi:end:
    for n from 0 to 6 do for k from 0 to 2*n do print(T(n,k));od:od: # Nathaniel Johnston, Apr 18 2011
  • Mathematica
    (* First program *)
    t[, 0] = 1; t[, 1] = 3; t[n_, k_] /; (k == 2*n) = 1; t[n_, k_] := t[n, k] = t[n-1, k-2] + t[n-1, k-1]; Table[t[n, k], {n, 0, 8}, {k, 0, 2*n}] // Flatten (* Jean-François Alcover, Dec 27 2013 *)
    (* Second program *)
    f[n_, k_]:= f[n,k]= Sum[Binomial[2*n-k+j,j]*LucasL[2*(k-n-j)], {j,0,k-n-1}];
    A027960[n_, k_]:= LucasL[k+1] - f[n,k]*Boole[k>n];
    Table[A027960[n,k], {n,0,12}, {k,0,2*n}]//Flatten (* G. C. Greubel, Jun 08 2025 *)
  • PARI
    T(r,n)=if(r<0||n>2*r,return(0)); if(n==0||n==2*r,return(1)); if(n==1,3,T(r-1,n-1)+T(r-1,n-2)) /* Ralf Stephan, May 04 2005 */
    
  • SageMath
    @CachedFunction
    def T(n, k): # T = A027960
        if (k>2*n): return 0
        elif (kG. C. Greubel, Jun 01 2019; Jun 08 2025
    

Formula

T(n, k) = Lucas(k+1) for k <= n, otherwise the (2n-k)th coefficient of the power series for (1+2*x)/{(1-x-x^2)*(1-x)^(k-n)}.
Recurrence: T(n, 0)=T(n, 2n)=1 for n >= 0; T(n, 1)=3 for n >= 1; and for n >= 2, T(n, k) = T(n-1, k-2) + T(n-1, k-1) for 2 <= k <= 2*n-1.
From G. C. Greubel, Jun 08 2025: (Start)
T(n, k) = A000032(k+1) - f(n, k)*[k > n], where f(n, k) = Sum_{j=0..k-n-1} binomial(2*n -k+j, j)*A000032(2*(k-n-j)).
Sum_{k=0..A004396(n+1)} T(n-k, k) = A027975(n).
Sum_{k=0..n} T(n, k) = A027961(n).
Sum_{k=0..2*n} T(n, k) = A168616(n+2) + 2.
Sum_{k=n+1..2*n} (-1)^k*T(n, k) = A075193(n-1), n >= 1. (End)

Extensions

Edited by Ralf Stephan, May 04 2005

A250783 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

9, 21, 18, 46, 46, 36, 99, 106, 96, 72, 209, 238, 230, 196, 144, 436, 518, 534, 482, 396, 288, 901, 1106, 1194, 1152, 990, 796, 576, 1849, 2326, 2604, 2640, 2426, 2010, 1596, 1152, 3774, 4838, 5568, 5882, 5688, 5028, 4054, 3196, 2304, 7671, 9978, 11732, 12796
Offset: 1

Views

Author

R. H. Hardin, Nov 27 2014

Keywords

Comments

Table starts
....9....21....46....99....209....436.....901....1849....3774.....7671....15541
...18....46...106...238....518...1106....2326....4838....9978....20446....41686
...36....96...230...534...1194...2604....5568...11732...24442....50482...103566
...72...196...482..1152...2640...5882...12796...27344...57610...120060...248072
..144...396...990..2426...5688..12950...28692...62274..132890...279864...583196
..288...796..2010..5028..12036..27986...63184..139436..301786...643164..1353544
..576..1596..4054.10306..25126..59590..137082..307762..676266..1460260..3107536
.1152..3196..8146.20960..51904.125334..293588..670608.1496970..3278004..7061504
.2304..6396.16334.42394.106344.260916..621664.1444162.3275574..7278104.15884220
.4608.12796.32714.85420.216500.538538.1303276.3076788.7089558.15987988.35370676

Examples

			Some solutions for n=4 k=4
..0..0..1..0..0....0..0..0..1..0....0..0..0..0..0....1..0..1..1..0
..0..0..1..0..0....0..0..0..1..1....0..0..0..0..0....1..0..1..1..0
..0..0..1..0..0....0..0..0..1..1....0..0..0..0..1....1..0..1..1..1
..0..0..1..0..1....0..0..0..1..1....1..1..1..1..0....1..0..1..1..1
..0..0..1..0..1....0..0..0..1..1....1..1..1..1..0....1..0..1..1..1
		

Crossrefs

Column 1 is A005010(n-1)
Row 1 is A027973(n+1)

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1); a(n) = 9*2^(n-1)
k=2: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 25*2^(n-1) -4
k=3: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3)
k=4: a(n) = 6*a(n-1) -14*a(n-2) +16*a(n-3) -9*a(n-4) +2*a(n-5)
k=5: a(n) = 8*a(n-1) -27*a(n-2) +50*a(n-3) -55*a(n-4) +36*a(n-5) -13*a(n-6) +2*a(n-7)
k=6: [order 9]
k=7: [order 11]
Empirical for row n:
n=1: a(n) = 3*a(n-1) -a(n-2) -2*a(n-3)
n=2: a(n) = 4*a(n-1) -4*a(n-2) -a(n-3) +2*a(n-4)
n=3: a(n) = 5*a(n-1) -8*a(n-2) +3*a(n-3) +3*a(n-4) -2*a(n-5)
n=4: a(n) = 5*a(n-1) -7*a(n-2) -2*a(n-3) +11*a(n-4) -5*a(n-5) -3*a(n-6) +2*a(n-7)
n=5: [order 8]
n=6: [order 9]
n=7: [order 10]

A104004 Expansion of (1-x) * (1+x) / ((1-2*x)*(1-x-x^2)).

Original entry on oeis.org

1, 3, 7, 16, 35, 75, 158, 329, 679, 1392, 2839, 5767, 11678, 23589, 47555, 95720, 192427, 386451, 775486, 1555153, 3117071, 6245088, 12507887, 25044431, 50135230, 100345485, 200812363, 401821144, 803960099, 1608434427, 3217700894, 6436748057
Offset: 0

Views

Author

Creighton Dement, Feb 24 2005

Keywords

Comments

A floretion-generated sequence relating to Fibonacci numbers and powers of 2. The sequence results from a particular transform of the sequence A000079*(-1)^n (powers of 2).
Floretion Algebra Multiplication Program, FAMP Code: 1jesforseq[ ( 5'i + .5i' + .5'ii' + .5e)*( + .5j' + .5'kk' + .5'ki' + .5e ) ], 1vesforseq = A000079(n+1)*(-1)^(n+1), ForType: 1A. Identity used: jesfor = jesrightfor + jesleftfor

Crossrefs

Programs

  • Magma
    [3*2^n-Fibonacci(n+3): n in [0..40]]; // Vincenzo Librandi, Aug 18 2017
    
  • Maple
    with (combinat):a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=fibonacci(n-1)+2*a[n-1] od: seq(a[n], n=1..26); # Zerinvary Lajos, Mar 17 2008
  • Mathematica
    LinearRecurrence[{3, -1, -2}, {1, 3, 7}, 80] (* Vincenzo Librandi, Aug 18 2017 *)
    CoefficientList[Series[(1-x)(1+x)/((2x-1)(x^2+x-1)),{x,0,40}],x] (* Harvey P. Dale, Oct 12 2024 *)
    A104004[n_]:= 3*2^n -Fibonacci[n+3]; (* G. C. Greubel, Jun 05 2025 *)
  • SageMath
    def A104004(n): return 3*2**n - fibonacci(n+3) # G. C. Greubel, Jun 05 2025

Formula

4*a(n) = A008466(n+3) + A027973(n) (FAMP result).
Suggestions made by Superseeker: (Start)
a(n+2) - a(n+1) - a(n) = A042950(n+1).
Coefficients of g.f.*(1-x)/(1+x) match A099036.
Coefficients of g.f./(1+x) match A027934.
Coefficients of g.f./(1-x^2) match A008466. (End)
a(n) = A101220(3, 2, n+1) - A101220(3, 2, n). - Ross La Haye, Aug 05 2005
a(n) = 3*2^n - Fibonacci(n+3) = A221719(n) + 1. - Ralf Stephan, May 20 2007, Hugo Pfoertner, Mar 06 2024
a(n) = (3*2^n - (2^(-n)*((1-sqrt(5))^n*(-2+sqrt(5)) + (1+sqrt(5))^n*(2+sqrt(5)))) / sqrt(5)). - Colin Barker, Aug 18 2017
From G. C. Greubel, Jun 05 2025: (Start)
Sum_{k=0..n} A022958(k+1)*a(n-k) = A001911(n+1).
Sum_{k=0..n} (-1)^k*A016777(k)*a(n-k) = A078024(n).
E.g.f.: 3*exp(2*x) - (2/sqrt(5))*exp(x/2)*( 2*sinh(sqrt(5)*x/2) + sqrt(5)*cosh(sqrt(5)*x/2) ). (End)

A175661 Eight bishops and one elephant on a 3 X 3 chessboard: a(n) = 2^(n+2)-3*F(n+1), with F(n) = A000045(n).

Original entry on oeis.org

1, 5, 10, 23, 49, 104, 217, 449, 922, 1883, 3829, 7760, 15685, 31637, 63706, 128111, 257353, 516536, 1036033, 2076857, 4161466, 8335475, 16691245, 33415328, 66883789, 133853549, 267846202, 535917479, 1072199137, 2144987528
Offset: 0

Views

Author

Johannes W. Meijer, Aug 06 2010, Aug 10 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the central square the bishop turns into a raging elephant, see A175654.
The sequence above corresponds to four A[5] vectors with decimal values 171, 174, 234 and 426. These vectors lead for the side squares to A000079 and for the corner squares to A175660 (a(n)=2^(n+2)-3*F(n+2)).

Crossrefs

Cf. A175655 (central square), A000045.
Cf. A027973 (2^(n+2)+F(n)-F(n+4)), A099036 (2^n-F(n)), A167821 (2^(n+1)-2*F(n+2)), A175657 (3*2^n-2*F(n+1)), A175660 (2^(n+2)-3*F(n+2)), A179610 (convolution of (-4)^n and F(n+1)).

Programs

  • Magma
    I:=[1,5,10]; [n le 3 select I[n] else 3*Self(n-1)-Self(n-2)-2*Self(n-3): n in [1..35]]; // Vincenzo Librandi, Jul 21 2013
  • Maple
    nmax:=29; m:=5; A[5]:= [0,1,0,1,0,1,0,1,1]: A:=Matrix([[0,0,0,0,1,0,0,0,1], [0,0,0,1,0,1,0,0,0], [0,0,0,0,1,0,1,0,0], [0,1,0,0,0,0,0,1,0], A[5], [0,1,0,0,0,0,0,1,0], [0,0,1,0,1,0,0,0,0], [0,0,0,1,0,1,0,0,0], [1,0,0,0,1,0,0,0,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    CoefficientList[Series[(1 + 2 x - 4 x^2) / (1 - 3 x + x^2 + 2 x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 21 2013 *)
    LinearRecurrence[{3,-1,-2},{1,5,10},30] (* Harvey P. Dale, Apr 15 2019 *)

Formula

G.f.: (1 + 2*x - 4*x^2)/(1 - 3*x + x^2 + 2*x^3).
a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) with a(0)=1, a(1)=5 and a(2)=10.

A125608 Triangle read by rows: given the left border = the Lucas numbers, (1, 3, 4, 7, ...), T(n,k) = (n-1,k) + (n-1,k-1).

Original entry on oeis.org

1, 3, 1, 4, 4, 1, 7, 8, 5, 1, 11, 15, 13, 6, 1, 18, 26, 28, 19, 7, 1, 29, 44, 54, 47, 26, 8, 1, 47, 73, 98, 101, 73, 34, 9, 1, 76, 120, 171, 199, 174, 107, 43, 10, 1, 123, 196, 291, 370, 373, 281, 150, 53, 11, 1, 199, 319, 487, 661, 743, 654, 431, 203, 64, 12, 1, 322, 518, 806, 1148, 1404, 1397, 1085, 634, 267, 76, 13, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 27 2006

Keywords

Comments

Row sums = A027973: (1, 4, 9, 21, 46, 99, 209, ...).

Examples

			First few rows of the triangle:
   1;
   3,  1;
   4,  4,  1;
   7,  8,  5,  1;
  11, 15, 13,  6,  1;
  18, 26, 28, 19,  7,  1;
  ...
(6,3) = 28 = 13 + 15 = (5,3) + (5,2).
		

Crossrefs

Cf. A027973.

Programs

  • Maple
    L[1]:=1: L[2]:=3: for n from 3 to 12 do L[n]:=L[n-1]+L[n-2] od: T:=proc(n,k) if k=1 then L[n] elif n=1 then 0 else T(n-1,k)+T(n-1,k-1) fi end: for n from 1 to 12 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Jan 01 2007
    A000204 := proc(n) if n =1 then RETURN(1) ; elif n = 2 then RETURN(3) ; else RETURN( A000204(n-1)+A000204(n-2)) ; fi ; end ; A125608 := proc(nmax) local a,row,col,anext ; a := [1] ; row := 1 ; while nops(a) < nmax do row := row+1 ; a := [op(a),A000204(row)] ; for col from 2 to row-1 do anext := op(-row,a)+op(-row+1,a) ; a := [op(a),anext] ; od ; a := [op(a),1] ; od ; RETURN(a) ; end ; A125608(80) ; # R. J. Mathar, Jan 07 2007
  • Mathematica
    T[n_, 1] := LucasL[n];
    T[n_, k_] /; 2 <= k <= n := T[n, k] = T[n - 1, k] + T[n - 1, k - 1];
    T[, ] = 0;
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 19 2024 *)

Extensions

More terms from Emeric Deutsch, Jan 01 2007
More terms from R. J. Mathar, Jan 07 2007

A347584 Triangle formed by Pascal's rule, except that the n-th row begins and ends with the n-th Lucas number.

Original entry on oeis.org

2, 1, 1, 3, 2, 3, 4, 5, 5, 4, 7, 9, 10, 9, 7, 11, 16, 19, 19, 16, 11, 18, 27, 35, 38, 35, 27, 18, 29, 45, 62, 73, 73, 62, 45, 29, 47, 74, 107, 135, 146, 135, 107, 74, 47, 76, 121, 181, 242, 281, 281, 242, 181, 121, 76, 123, 197, 302, 423, 523, 562, 523, 423, 302, 197, 123
Offset: 0

Views

Author

Noah Carey and Greg Dresden, Sep 07 2021

Keywords

Comments

Similar in spirit to the Fibonacci-Pascal triangle A074829, which uses Fibonacci numbers instead of Lucas numbers at the ends of each row.
If we consider the top of the triangle to be the 0th row, then the sum of terms in n-th row is 2*(2^(n+1) - Lucas(n+1)). This sum also equals 2*A027973(n-1) for n>0.

Examples

			The first two Lucas numbers (for n=0 and n=1) are 2 and 1, so the first two rows (again, for n=0 and n=1) of the triangle are 2 and 1, 1 respectively.
Triangle begins:
               2;
             1,  1;
           3,  2,  3;
         4,  5,  5,  4;
       7,  9, 10,  9,  7;
    11, 16, 19, 19, 16, 11;
  18, 27, 35, 38, 35, 27, 18;
		

Crossrefs

Cf. A227550, A228196 (general formula).
Fibonacci borders: A074829, A108617, A316938, A316939.

Programs

  • Mathematica
    T[n_, 0] := LucasL[n]; T[n_, n_] := LucasL[n];
    T[n_, k_] := T[n - 1, k - 1] + T[n - 1, k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten

Formula

a(n) = 2*A074829(n+1) - A108617(n).
Showing 1-7 of 7 results.