cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A027983 Duplicate of A027974.

Original entry on oeis.org

1, 5, 14, 35, 81, 180, 389, 825, 1726, 3575, 7349, 15020, 30561, 61965, 125294, 252795, 509161, 1024100, 2057549, 4130225, 8284926, 16609455, 33282989, 66669660, 133507081, 267285605, 535010414
Offset: 0

Views

Author

Keywords

A101220 a(n) = Sum_{k=0..n} Fibonacci(n-k)*n^k.

Original entry on oeis.org

0, 1, 3, 14, 91, 820, 9650, 140601, 2440317, 49109632, 1123595495, 28792920872, 816742025772, 25402428294801, 859492240650847, 31427791175659690, 1234928473553777403, 51893300561135516404, 2322083099525697299278
Offset: 0

Views

Author

Ross La Haye, Dec 14 2004

Keywords

Comments

In what follows a(i,j,k) denotes a three-dimensional array, the terms a(n) are defined as a(n,n,n) in that array. - Joerg Arndt, Jan 03 2021
Previous name was: Three-dimensional array: a(i,j,k) = expansion of x*(1 + (i-j)*x)/((1-j*x)*(1-x-x^2)), read by a(n,n,n).
a(i,j,k) = the k-th value of the convolution of the Fibonacci numbers (A000045) with the powers of i = Sum_{m=0..k} a(i-1,j,m), both for i = j and i > 0; a(i,j,k) = a(i-1,j,k) + a(j,j,k-1), for i,k > 0; a(i,1,k) = Sum_{m=0..k} a(i-1,0,m), for i > 0. With F = Fibonacci and L = Lucas, then a(1,1,k) = F(k+2) - 1; a(2,1,k) = F(k+3) - 2; a(3,1,k) = L(k+2) - 3; a(4,1,k) = 4*F(k+1) + F(k) - 4; a(1,2,k) = 2^k - F(k+1); a(2,2,k) = 2^(k+1) - F(k+3); a(3,2,k) = 3(2^k - F(k+2)) + F(k); a(4,2,k) = 2^(k+2) - F(k+4) - F(k+2); a(1,3,k) = (3^k + L(k-1))/5, for k > 0; a(2,3,k) = (2 * 3^k - L(k)) /5, for k > 0; a(3,3,k) = (3^(k+1) - L(k+2))/5; a(4,3,k) = (4 * 3^k - L(k+2) - L(k+1))/5, etc..

Examples

			a(1,3,3) = 6 because a(1,3,0) = 0, a(1,3,1) = 1, a(1,3,2) = 2 and 4*2 - 2*1 - 3*0 = 6.
		

Crossrefs

a(0, j, k) = A000045(k).
a(1, 2, k+1) - a(1, 2, k) = A099036(k).
a(3, 2, k+1) - a(3, 2, k) = A104004(k).
a(4, 2, k+1) - a(4, 2, k) = A027973(k).
a(1, 3, k+1) - a(1, 3, k) = A099159(k).
a(i, 0, k) = A109754(i, k).
a(i, i+1, 3) = A002522(i+1).
a(i, i+1, 4) = A071568(i+1).
a(2^i-2, 0, k+1) = A118654(i, k), for i > 0.
Sequences of the form a(n, 0, k): A000045(k+1) (n=1), A000032(k) (n=2), A000285(k-1) (n=3), A022095(k-1) (n=4), A022096(k-1) (n=5), A022097(k-1) (n=6), A022098(k-1) (n=7), A022099(k-1) (n=8), A022100(k-1) (n=9), A022101(k-1) (n=10), A022102(k-1) (n=11), A022103(k-1) (n=12), A022104(k-1) (n=13), A022105(k-1) (n=14), A022106(k-1) (n=15), A022107(k-1) (n=16), A022108(k-1) (n=17), A022109(k-1) (n=18), A022110(k-1) (n=19), A088209(k-2) (n=k-2), A007502(k) (n=k-1), A094588(k) (n=k).
Sequences of the form a(1, n, k): A000071(k+2) (n=1), A027934(k-1) (n=2), A098703(k) (n=3).
Sequences of the form a(2, n, k): A001911(k) (n=1), A008466(k+1) (n=2), A106517(k-1) (n=3).
Sequences of the form a(3, n, k): A027961(k) (n=1), A094688(k) (n=3).
Sequences of the form a(4, n, k): A053311(k-1) (n=1), A027974(k-1) (n=2).

Programs

  • Magma
    A101220:= func< n | (&+[n^k*Fibonacci(n-k): k in [0..n]]) >;
    [A101220(n): n in [0..30]]; // G. C. Greubel, Jun 01 2025
    
  • Mathematica
    Join[{0}, Table[Sum[Fibonacci[n-k]*n^k, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Jan 03 2021 *)
  • PARI
    a(n)=sum(k=0,n,fibonacci(n-k)*n^k) \\ Joerg Arndt, Jan 03 2021
    
  • SageMath
    def A101220(n): return sum(n^k*fibonacci(n-k) for k in range(n+1))
    print([A101220(n) for n in range(31)]) # G. C. Greubel, Jun 01 2025

Formula

a(i, j, 0) = 0, a(i, j, 1) = 1, a(i, j, 2) = i+1; a(i, j, k) = ((j+1)*a(i, j, k-1)) - ((j-1)*a(i, j, k-2)) - (j*a(i, j, k-3)), for k > 2.
a(i, j, k) = Fibonacci(k) + i*a(j, j, k-1), for i, k > 0.
a(i, j, k) = (Phi^k - (-Phi)^-k + i(((j^k - Phi^k) / (j - Phi)) - ((j^k - (-Phi)^-k) / (j - (-Phi)^-1)))) / sqrt(5), where Phi denotes the golden mean/ratio (A001622).
i^k = a(i-1, i, k) + a(i-2, i, k+1).
A104161(k) = Sum_{m=0..k} a(k-m, 0, m).
a(i, j, 0) = 0, a(i, j, 1) = 1, a(i, j, 2) = i+1, a(i, j, 3) = i*(j+1) + 2; a(i, j, k) = (j+2)*a(i, j, k-1) - 2*j*a(i, j, k-2) - a(i, j, k-3) + j*a(i, j, k-4), for k > 3. a(i, j, 0) = 0, a(i, j, 1) = 1; a(i, j, k) = a(i, j, k-1) + a(i, j, k-2) + i * j^(k-2), for k > 1.
G.f.: x*(1 + (i-j)*x)/((1-j*x)*(1-x-x^2)).
a(n, n, n) = Sum_{k=0..n} Fibonacci(n-k) * n^k. - Ross La Haye, Jan 14 2006
Sum_{m=0..k} binomial(k,m)*(i-1)^m = a(i-1,i,k) + a(i-2,i,k+1), for i > 1. - Ross La Haye, May 29 2006
From Ross La Haye, Jun 03 2006: (Start)
a(3, 3, k+1) - a(3, 3, k) = A106517(k).
a(1, 1, k) = A001924(k) - A001924(k-1), for k > 0.
a(2, 1, k) = A001891(k) - A001891(k-1), for k > 0.
a(3, 1, k) = A023537(k) - A023537(k-1), for k > 0.
Sum_{j=0..i+1} a(i-j+1, 0, j) - Sum_{j=0..i} a(i-j, 0, j) = A001595(i). (End)
a(i,j,k) = a(j,j,k) + (i-j)*a(j,j,k-1), for k > 0.
a(n) ~ n^(n-1). - Vaclav Kotesovec, Jan 03 2021

Extensions

New name from Joerg Arndt, Jan 03 2021

A027960 'Lucas array': triangular array T read by rows.

Original entry on oeis.org

1, 1, 3, 1, 1, 3, 4, 4, 1, 1, 3, 4, 7, 8, 5, 1, 1, 3, 4, 7, 11, 15, 13, 6, 1, 1, 3, 4, 7, 11, 18, 26, 28, 19, 7, 1, 1, 3, 4, 7, 11, 18, 29, 44, 54, 47, 26, 8, 1, 1, 3, 4, 7, 11, 18, 29, 47, 73, 98, 101, 73, 34, 9, 1, 1, 3, 4, 7, 11, 18, 29, 47, 76, 120, 171, 199, 174, 107, 43, 10, 1
Offset: 0

Views

Author

Keywords

Comments

The k-th row contains 2k+1 numbers.
Columns in the right half consist of convolutions of the Lucas numbers with the natural numbers.
T(n,k) = number of strings s(0),...,s(n) such that s(n)=n-k. s(0) in {0,1,2}, s(1)=1 if s(0) in {1,2}, s(1) in {0,1,2} if s(0)=0 and for 1 <= i <= n, s(i) = s(i-1)+d, with d in {0,2} if s(i)=2i, in {0,1,2} if s(i)=2i-1, in {0,1} if 0 <= s(i) <= 2i-2.

Examples

			                           1
                       1,  3,  1
                   1,  3,  4,  4,  1
               1,  3,  4,  7,  8,  5,   1
           1,  3,  4,  7, 11, 15, 13,   6,  1
        1, 3,  4,  7, 11, 18, 26, 28,  19,  7,  1
     1, 3, 4,  7, 11, 18, 29, 44, 54,  47, 26,  8, 1
  1, 3, 4, 7, 11, 18, 29, 47, 73, 98, 101, 73, 34, 9, 1
		

Crossrefs

Central column is the Lucas numbers without initial 2: A000204.
Columns in the right half include A027961, A027962, A027963, A027964, A053298.
Bisection triangles are in A026998 and A027011.
Row sums: A036563, A153881 (alternating sign).
Diagonals of the form T(n, 2*n-p): A000012 (p=0), A000027 (p=1), A034856 (p=2), A027965 (p=3), A027966 (p=4), A027967 (p=5), A027968 (p=6), A027969 (p=7), A027970 (p=8), A027971 (p=9), A027972 (p=10).
Diagonals of the form T(n, n+p): A000032 (p=0), A027961 (p=1), A023537 (p=2), A027963 (p=3), A027964 (p=4), A053298 (p=5), A027002 U A027018 (p=6), A027007 U A027014 (p=7), A027003 U A027019 (p=8).

Programs

  • Magma
    function T(n,k) // T = A027960
          if k le n then return Lucas(k+1);
          elif k gt 2*n then return 0;
          else return T(n-1, k-2) + T(n-1, k-1);
          end if;
    end function;
    [T(n,k): k in [0..2*n], n in [0..12]]; // G. C. Greubel, Jun 08 2025
  • Maple
    T:=proc(n,k)option remember:if(k=0 or k=2*n)then return 1:elif(k=1)then return 3:else return T(n-1,k-2) + T(n-1,k-1):fi:end:
    for n from 0 to 6 do for k from 0 to 2*n do print(T(n,k));od:od: # Nathaniel Johnston, Apr 18 2011
  • Mathematica
    (* First program *)
    t[, 0] = 1; t[, 1] = 3; t[n_, k_] /; (k == 2*n) = 1; t[n_, k_] := t[n, k] = t[n-1, k-2] + t[n-1, k-1]; Table[t[n, k], {n, 0, 8}, {k, 0, 2*n}] // Flatten (* Jean-François Alcover, Dec 27 2013 *)
    (* Second program *)
    f[n_, k_]:= f[n,k]= Sum[Binomial[2*n-k+j,j]*LucasL[2*(k-n-j)], {j,0,k-n-1}];
    A027960[n_, k_]:= LucasL[k+1] - f[n,k]*Boole[k>n];
    Table[A027960[n,k], {n,0,12}, {k,0,2*n}]//Flatten (* G. C. Greubel, Jun 08 2025 *)
  • PARI
    T(r,n)=if(r<0||n>2*r,return(0)); if(n==0||n==2*r,return(1)); if(n==1,3,T(r-1,n-1)+T(r-1,n-2)) /* Ralf Stephan, May 04 2005 */
    
  • SageMath
    @CachedFunction
    def T(n, k): # T = A027960
        if (k>2*n): return 0
        elif (kG. C. Greubel, Jun 01 2019; Jun 08 2025
    

Formula

T(n, k) = Lucas(k+1) for k <= n, otherwise the (2n-k)th coefficient of the power series for (1+2*x)/{(1-x-x^2)*(1-x)^(k-n)}.
Recurrence: T(n, 0)=T(n, 2n)=1 for n >= 0; T(n, 1)=3 for n >= 1; and for n >= 2, T(n, k) = T(n-1, k-2) + T(n-1, k-1) for 2 <= k <= 2*n-1.
From G. C. Greubel, Jun 08 2025: (Start)
T(n, k) = A000032(k+1) - f(n, k)*[k > n], where f(n, k) = Sum_{j=0..k-n-1} binomial(2*n -k+j, j)*A000032(2*(k-n-j)).
Sum_{k=0..A004396(n+1)} T(n-k, k) = A027975(n).
Sum_{k=0..n} T(n, k) = A027961(n).
Sum_{k=0..2*n} T(n, k) = A168616(n+2) + 2.
Sum_{k=n+1..2*n} (-1)^k*T(n, k) = A075193(n-1), n >= 1. (End)

Extensions

Edited by Ralf Stephan, May 04 2005

A142585 Inverse binomial transform of A014217.

Original entry on oeis.org

1, 0, 1, 0, -1, 5, -14, 35, -81, 180, -389, 825, -1726, 3575, -7349, 15020, -30561, 61965, -125294, 252795, -509161, 1024100, -2057549, 4130225, -8284926, 16609455, -33282989, 66669660, -133507081, 267285605, -535010414, 1070731475, -2142612801, 4287086100
Offset: 0

Views

Author

Paul Curtz, Sep 21 2008

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [(-1)^n*( Lucas(n) - 2^(n-1) ): n in [1..40]]; // G. C. Greubel, Apr 14 2021
    
  • Mathematica
    Table[(-1)^n*(LucasL[n] -2^(n-1)) - Boole[n==0]/2, {n,0,40}] (* G. C. Greubel, Apr 14 2021 *)
  • Sage
    [1]+[(-1)^n*( lucas_number2(n,1,-1) - 2^(n-1) ) for n in (1..40)] # G. C. Greubel, Apr 14 2021

Formula

a(n) = (-1)^(n+1) * A027974(n-4) for n > 4.
G.f.: (1+3*x+2*x^2+x^3)/((1+2*x)*(1+x-x^2)). - R. J. Mathar, Sep 22 2008
a(n) = (-1)^(n+1)*(2^(n-1) -F(n+1) -F(n-1)), where F(n) = A000045(n), for n>=1, with a(0)=1. - Johannes W. Meijer, Aug 15 2010
a(n) = -3*a(n-1) - a(n-2) + 2*a(n-3). - Wesley Ivan Hurt, Oct 06 2017

Extensions

Edited and extended by R. J. Mathar, Sep 22 2008

A175660 Eight bishops and one elephant on a 3 X 3 chessboard. a(n) = 2^(n+2) - 3*F(n+2).

Original entry on oeis.org

1, 2, 7, 17, 40, 89, 193, 410, 859, 1781, 3664, 7493, 15253, 30938, 62575, 126281, 254392, 511745, 1028281, 2064314, 4141171, 8302637, 16638112, 33329357, 66744685, 133628474, 267482023, 535328225, 1071245704, 2143444841
Offset: 0

Views

Author

Johannes W. Meijer, Aug 06 2010, Aug 10 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in a given corner square (m = 1, 3, 7, 9) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the central square the bishop turns into a raging elephant, see A175654.
The sequence above corresponds to four A[5] vectors with decimal values 171, 174, 234 and 426. These vectors lead for the side squares to A000079 and for the central square to A175661 (a(n) = 2^(n+2) - 3*F(n+1)).

Crossrefs

Cf. A008466 (2^n-F(n+2)), A027934 (2^n-F(n+1)), A027974 (2^(n+3)-F(n+5)-F(n+3)), A074878 (3*2^n-2*F(n+2)), A142585 ((-1)^(n+1)*(2^(n-1)-F(n+1)-F(n-1))), A175661 (2^(n+2)-3*F(n+1)), A179610 (convolution of (-4)^n and F(n+1)).

Programs

  • Maple
    nmax:=29; m:=1; A[5]:= [0,1,0,1,0,1,0,1,1]: A:=Matrix([[0,0,0,0,1,0,0,0,1], [0,0,0,1,0,1,0,0,0], [0,0,0,0,1,0,1,0,0], [0,1,0,0,0,0,0,1,0], A[5], [0,1,0,0,0,0,0,1,0], [0,0,1,0,1,0,0,0,0], [0,0,0,1,0,1,0,0,0], [1,0,0,0,1,0,0,0,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    Table[2^(n+2)-3Fibonacci[n+2],{n,0,30}] (* or *) LinearRecurrence[ {3,-1,-2},{1,2,7},30] (* Harvey P. Dale, Dec 28 2012 *)

Formula

G.f.: (1 - x + 2*x^2)/(1 - 3*x + x^2 + 2*x^3).
a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) with a(0)=1, a(1)=2 and a(2)=7.
a(n) = 2^(n+2) - 3*F(n+2) with F(n)=A000045(n).

A227200 a(n) = a(n-1) + a(n-2) - 2^(n-1) with a(0)=a(2)=0, a(1)=-a(3)=1, a(4)=-5.

Original entry on oeis.org

0, 1, 0, -1, -5, -14, -35, -81, -180, -389, -825, -1726, -3575, -7349, -15020, -30561, -61965, -125294, -252795, -509161, -1024100, -2057549, -4130225, -8284926, -16609455, -33282989, -66669660, -133507081, -267285605, -535010414, -1070731475
Offset: 0

Views

Author

Chandrakant N Phadte, Sep 18 2013

Keywords

Crossrefs

Cf. versions with different signs: A027974, A142585.

Programs

  • BASIC
    LET N=0
    LET L=0
    LET M=1
    PRINT L
    PRINT M
    FOR I=1 TO 30
    LET N=M+L-(2)^(I-1)
    PRINT N
    LET L=M
    LET M=N
    NEXT I
    END
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!((1-3*x)/((1-2*x)*(1-x-x^2)))); // Bruno Berselli, Oct 03 2013
    
  • Magma
    I:=[0,1,0,-1,-5]; [n le 5 select I[n] else Self(n-1)+Self(n-2)-2^(n-3): n in [1..35]]; // Vincenzo Librandi, Oct 05 2013
  • Mathematica
    Table[LucasL[n + 1] - 2^n, {n, 0, 30}] (* Bruno Berselli, Oct 03 2013 *)
    CoefficientList[Series[x (1 - 3 x)/((1 - 2 x) (1 - x - x^2)), {x, 0, 40}], x](* Vincenzo Librandi, Oct 05 2013 *)
  • PARI
    a(n)=fibonacci(n)+fibonacci(n+2)-2^n \\ Charles R Greathouse IV, Oct 03 2013
    

Formula

G.f.: x*(1-3*x)/((1-2*x)*(1-x-x^2)).
a(n) = -(-1)^n*A142585(n+1) = A000032(n+1) - 2^n. [Bruno Berselli, Oct 03 2013]
a(n) = 3*a(n-1) -a(n-2) -2*a(n-3). [Bruno Berselli, Oct 03 2013]

Extensions

More terms from Bruno Berselli, Oct 03 2013

A237498 Riordan array (1/(1-x-x^2), x/(1+2*x)).

Original entry on oeis.org

1, 1, 1, 2, -1, 1, 3, 4, -3, 1, 5, -5, 10, -5, 1, 8, 15, -25, 20, -7, 1, 13, -22, 65, -65, 34, -9, 1, 21, 57, -152, 195, -133, 52, -11, 1, 34, -93, 361, -542, 461, -237, 74, -13, 1, 55, 220, -815, 1445, -1464, 935, -385, 100, -15, 1, 89, -385, 1850, -3705
Offset: 0

Views

Author

Philippe Deléham, Feb 08 2014

Keywords

Comments

First column: Fibonacci numbers A000045(n+1).

Examples

			Triangle begins:
   1;
   1,    1;
   2,   -1,    1;
   3,    4,   -3,    1;
   5,   -5,   10,   -5,   1;
   8,   15,  -25,   20,  -7,   1;
  13,  -22,   65,  -65,  34,  -9,  1;
  ...
Production matrix is:
   1,  1;
   1, -2,  1;
   2,  0, -2,  1;
   4,  0,  0, -2,  1;
   8,  0,  0,  0, -2,  1;
  16,  0,  0,  0,  0, -2,  1;
  32,  0,  0,  0,  0,  0, -2,  1;
  64,  0,  0,  0,  0,  0,  0, -2,  1;
  ...
		

Crossrefs

Columns: A000045, A084179.

Programs

  • Mathematica
    nmax=10;Flatten[CoefficientList[Series[CoefficientList[Series[(1 + 2*x) / ((1 + 2*x - y*x) * (1 - x - x^2)), {x, 0, nmax }], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 15 2017 *)

Formula

Sum_{k=0..n} T(n,k)*x^k = A000045(n+1), A098600(n), A000032(n+1), A027961(n+1), A027974(n) for x = 0, 1, 2, 3, 4 respectively.
T(n,k) = T(n-1,k-1) - T(n-1,k) + 3*T(n-2,k) - T(n-2,k-1) + 2*T(n-3,k) - T(n-3,k-1), T(0,0) = T(1,0) = T(1,1) = T(2,2) = 1, T(2,0) = 2, T(2,1) = -1, T(n,k) = 0 if k<0 or if k>n.
T(n,0) = T(n-1,0) + T(n-2,0) with T(0,0) = T(1,0) = 1, T(n,k) = T(n-1,k-1) - 2*T(n-1,k) for k>=1.
G.f.: (1+2*x)/((1+2*x-y*x)*(1-x-x^2)).
Showing 1-7 of 7 results.