A027983 Duplicate of A027974.
1, 5, 14, 35, 81, 180, 389, 825, 1726, 3575, 7349, 15020, 30561, 61965, 125294, 252795, 509161, 1024100, 2057549, 4130225, 8284926, 16609455, 33282989, 66669660, 133507081, 267285605, 535010414
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(1,3,3) = 6 because a(1,3,0) = 0, a(1,3,1) = 1, a(1,3,2) = 2 and 4*2 - 2*1 - 3*0 = 6.
A101220:= func< n | (&+[n^k*Fibonacci(n-k): k in [0..n]]) >; [A101220(n): n in [0..30]]; // G. C. Greubel, Jun 01 2025
Join[{0}, Table[Sum[Fibonacci[n-k]*n^k, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Jan 03 2021 *)
a(n)=sum(k=0,n,fibonacci(n-k)*n^k) \\ Joerg Arndt, Jan 03 2021
def A101220(n): return sum(n^k*fibonacci(n-k) for k in range(n+1)) print([A101220(n) for n in range(31)]) # G. C. Greubel, Jun 01 2025
1 1, 3, 1 1, 3, 4, 4, 1 1, 3, 4, 7, 8, 5, 1 1, 3, 4, 7, 11, 15, 13, 6, 1 1, 3, 4, 7, 11, 18, 26, 28, 19, 7, 1 1, 3, 4, 7, 11, 18, 29, 44, 54, 47, 26, 8, 1 1, 3, 4, 7, 11, 18, 29, 47, 73, 98, 101, 73, 34, 9, 1
function T(n,k) // T = A027960 if k le n then return Lucas(k+1); elif k gt 2*n then return 0; else return T(n-1, k-2) + T(n-1, k-1); end if; end function; [T(n,k): k in [0..2*n], n in [0..12]]; // G. C. Greubel, Jun 08 2025
T:=proc(n,k)option remember:if(k=0 or k=2*n)then return 1:elif(k=1)then return 3:else return T(n-1,k-2) + T(n-1,k-1):fi:end: for n from 0 to 6 do for k from 0 to 2*n do print(T(n,k));od:od: # Nathaniel Johnston, Apr 18 2011
(* First program *) t[, 0] = 1; t[, 1] = 3; t[n_, k_] /; (k == 2*n) = 1; t[n_, k_] := t[n, k] = t[n-1, k-2] + t[n-1, k-1]; Table[t[n, k], {n, 0, 8}, {k, 0, 2*n}] // Flatten (* Jean-François Alcover, Dec 27 2013 *) (* Second program *) f[n_, k_]:= f[n,k]= Sum[Binomial[2*n-k+j,j]*LucasL[2*(k-n-j)], {j,0,k-n-1}]; A027960[n_, k_]:= LucasL[k+1] - f[n,k]*Boole[k>n]; Table[A027960[n,k], {n,0,12}, {k,0,2*n}]//Flatten (* G. C. Greubel, Jun 08 2025 *)
T(r,n)=if(r<0||n>2*r,return(0)); if(n==0||n==2*r,return(1)); if(n==1,3,T(r-1,n-1)+T(r-1,n-2)) /* Ralf Stephan, May 04 2005 */
@CachedFunction def T(n, k): # T = A027960 if (k>2*n): return 0 elif (kG. C. Greubel, Jun 01 2019; Jun 08 2025
[1] cat [(-1)^n*( Lucas(n) - 2^(n-1) ): n in [1..40]]; // G. C. Greubel, Apr 14 2021
Table[(-1)^n*(LucasL[n] -2^(n-1)) - Boole[n==0]/2, {n,0,40}] (* G. C. Greubel, Apr 14 2021 *)
[1]+[(-1)^n*( lucas_number2(n,1,-1) - 2^(n-1) ) for n in (1..40)] # G. C. Greubel, Apr 14 2021
nmax:=29; m:=1; A[5]:= [0,1,0,1,0,1,0,1,1]: A:=Matrix([[0,0,0,0,1,0,0,0,1], [0,0,0,1,0,1,0,0,0], [0,0,0,0,1,0,1,0,0], [0,1,0,0,0,0,0,1,0], A[5], [0,1,0,0,0,0,0,1,0], [0,0,1,0,1,0,0,0,0], [0,0,0,1,0,1,0,0,0], [1,0,0,0,1,0,0,0,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
Table[2^(n+2)-3Fibonacci[n+2],{n,0,30}] (* or *) LinearRecurrence[ {3,-1,-2},{1,2,7},30] (* Harvey P. Dale, Dec 28 2012 *)
LET N=0 LET L=0 LET M=1 PRINT L PRINT M FOR I=1 TO 30 LET N=M+L-(2)^(I-1) PRINT N LET L=M LET M=N NEXT I END
m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!((1-3*x)/((1-2*x)*(1-x-x^2)))); // Bruno Berselli, Oct 03 2013
I:=[0,1,0,-1,-5]; [n le 5 select I[n] else Self(n-1)+Self(n-2)-2^(n-3): n in [1..35]]; // Vincenzo Librandi, Oct 05 2013
Table[LucasL[n + 1] - 2^n, {n, 0, 30}] (* Bruno Berselli, Oct 03 2013 *) CoefficientList[Series[x (1 - 3 x)/((1 - 2 x) (1 - x - x^2)), {x, 0, 40}], x](* Vincenzo Librandi, Oct 05 2013 *)
a(n)=fibonacci(n)+fibonacci(n+2)-2^n \\ Charles R Greathouse IV, Oct 03 2013
Triangle begins: 1; 1, 1; 2, -1, 1; 3, 4, -3, 1; 5, -5, 10, -5, 1; 8, 15, -25, 20, -7, 1; 13, -22, 65, -65, 34, -9, 1; ... Production matrix is: 1, 1; 1, -2, 1; 2, 0, -2, 1; 4, 0, 0, -2, 1; 8, 0, 0, 0, -2, 1; 16, 0, 0, 0, 0, -2, 1; 32, 0, 0, 0, 0, 0, -2, 1; 64, 0, 0, 0, 0, 0, 0, -2, 1; ...
nmax=10;Flatten[CoefficientList[Series[CoefficientList[Series[(1 + 2*x) / ((1 + 2*x - y*x) * (1 - x - x^2)), {x, 0, nmax }], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 15 2017 *)
Comments